Дилемма заключенного и доминантные стратегии. Теория игр - [11]

Шрифт
Интервал

Для игр, в которых партия не обязательно содержит конечное число ходов, применимость этого утверждения зависит от принятия так называемой аксиомы выбора. Эта известная и противоречивая математическая аксиома утверждает, что для каждого семейства (конечного или бесконечного) непустых непересекающихся множеств существует новое множество, образованное путем выбора определенного элемента из каждого множества этого семейства. С помощью этой аксиомы Банах, Мазур и Улам в 1930 году определили бесконечную игру и доказали, что в ней не существует выигрышной стратегии ни для одного из игроков.

Использование преимуществ и определение стратегий. Игра Ним и ей подобные

Вернемся к классификации игр и сосредоточим внимание на так называемых стратегических играх. Их можно разделить на два типа. Те, что описываются простыми правилами, длятся короткое время и количество информации в которых ограничено или относительно невелико, будем называть малыми стратегическими играми. В других, подобных шахматам или го, полный контроль невозможен ввиду длительности партии, сложности правил и в особенности из-за огромного числа возможных ходов в каждой позиции. На примере малых стратегических игр мы увидим, как математика используется в анализе игр для определения преимущества одного из игроков и для нахождения выигрышной стратегии.

«Игра в шахматы» — полотно, созданное в 1555 году художницей эпохи Возрождения Софонисбой Ангиссолой. В этой игре отсутствует элемент случайности, но число возможных ходов столь велико, что не поддается математическому контролю.


Взаимосвязь между математикой и играми может касаться различных аспектов игр, как уже говорилось в первой главе. Применительно к стратегическим играм математика особенно полезна для определения выигрышной стратегии. Стратегическая игра очень похожа на процесс решения математической задачи: речь идет не о том, чтобы выиграть одну партию, совершая более удачные ходы, но о том, чтобы найти способ, как выигрывать всегда. По этой причине при определении выигрышных стратегий используются эвристические методы: способ «от обратного»; предположение, что игра «решена»; применение симметрии; проведение аналогии с другой, уже решенной игрой и прочие. Они аналогичны тем, что используются при решении математических задач. Поэтому когда для некоторой игры известна выигрышная стратегия, игра из развлечения превращается в решенную задачу. Понятно, что это верно только для определенных игр, которые выходят за рамки простых развлечений и описываются в математических теориях. О подобных теориях, порой достаточно сложных, мы поговорим далее.

Суть малой стратегической игры для двух игроков, известной под названием Ним, заключается в том, что игроки выкладывают на стол одну или несколько групп фишек и определяют правила, по которым нужно снимать фишки со стола. Цель игры — взять последнюю фишку либо, наоборот, заставить противника взять последнюю фишку. Происхождение этой игры неизвестно. Некоторые считают, что она родом с Востока. Также неясно и происхождение названия. Среди возможных версий — староанглийское слово «ним», означавшее «брать», «красть». Некто очень остроумный заметил, что если применить к слову NIM центральную симметрию, получится слово WIN — «выиграть» в переводе с английского. Как бы то ни было, игре Ним больше ста лет: первый анализ выигрышной стратегии для игр подобного типа был впервые опубликован в 1902 году математиком Гарвардского университета Чарльзом Леонардом Боутоном.

Эта игра приобрела популярность в Европе в 70-е годы XX века благодаря фильму французского режиссера Алена Рене «В прошлом году в Мариенбаде» (1961). Герои фильма несколько раз играют в один из вариантов этой игры. Поэтому версия игры из фильма (она рассматривается далее в этой книге в параграфе «Игра 5») иногда называется Мариенбад — по имени маленького курортного города в Чехии, где происходит действие картины.

Определение общей выигрышной стратегии, применимой к любой игре такого типа, — одно из ярчайших проявлений того, как математика используется для анализа игр, и в особенности того, насколько эффективно представление чисел в двоичной системе.

«Мариенбад» — одна из версий игры Ним.

Об определении стратегии

Сначала мы проанализируем игры с одной группой фишек, в которых на каждом ходу можно брать со стола минимум одну и максимум n фишек. Мы рассмотрим два частных случая, затем приведем обобщение. Самый простой вариант подобной игры таков.

Игра 1: выигрывает первый

На стол выкладываются 20 фишек одного цвета. На каждом ходу один из двух игроков может брать одну или две фишки. Тот, кто берет последнюю фишку, выигрывает. Какой из игроков имеет преимущество — тот, кто ходит первым, или второй участник? Как нужно играть, чтобы всегда выигрывать? Что произойдет, если изменится число фишек? Что поменяется, если мы изменим правила игры и тот, кто берет последнюю фишку, будет проигрывать? Это достаточно простая игра, поэтому ее можно проанализировать полностью, определить выигрышную стратегию и обобщить ее для любого числа фишек. Если читатель незнаком с этой игрой, перед прочтением следующих страниц ему будет интересно попробовать сыграть в нее самому и постараться ответить на заданные выше вопросы.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.