Дилемма заключенного и доминантные стратегии. Теория игр - [10]

Шрифт
Интервал

Костяшки домино XIX века. Домино — одна из игр, где случай вмешивается лишь на этапе выбора костяшек, в дальнейшем все зависит исключительно от умения игроков.


Стратегическими называются игры, в которых никогда не происходит случайных событий. Всё определяют только решения игроков. Благодаря отсутствию случайности, игры этого типа можно проанализировать и найти способ победить. В некоторых случаях можно полностью определить выигрышную стратегию, в других ввиду сложности игры это не удастся, но можно показать, что подобная стратегия существует для одного из игроков. Несмотря на очевидное разнообразие игр такого типа, к ним применимо ограниченное число математических понятий и приемов, которые относятся преимущественно к арифметике (системы счисления и признаки делимости) и геометрии (равновесные ситуации, главным образом, симметрия).

Понятие выигрышной стратегии

В математике слово «игра» может обозначать как собственно игру, в которой участвует более одного игрока, имеются определенные правила, а цель игры — одержать победу в партии, так и математические развлечения и головоломки. В дальнейшем мы будем говорить об играх, в которых участвуют минимум два игрока. Эти игры также можно разбить на группы разными способами, но с точки зрения математики существует признак, определяющий две большие группы: игры с полной информацией и игры, в которых присутствует элемент неопределенности. В этой главе игры первой группы мы будем называть стратегическими, игры второй группы — азартными.

Как следует изучив игру, мы задаемся вопросом: какие ходы нужно совершать, чтобы одержать победу в определенной партии? В азартных играх (например, в классической игре «Змеи и лестницы») этот вопрос не имеет смысла, поскольку игроки лишь двигают фишки согласно выпавшим очкам на игральных костях и следуют инструкциям на игровых клетках. Иными словами, здесь нет места для принятия решений, поэтому нет «хороших» или «плохих» игроков. Результат игр подобного типа полностью зависит от случая, поэтому определить какую-либо выигрышную стратегию невозможно. В этом смысле можно сказать, что интересность игры с точки зрения математики равна нулю.

Другой крайний случай — игры с полной информацией, в которых в любой момент можно узнать все возможные ходы и их последствия (как минимум в теории) и нет места неопределенности. Из всех подобных игр нам больше всего знакомы шахматы, хотя подобных стратегических игр, как традиционных (го, манкала, шашки, крестики-нолики), так и современных (гекс, ним, реверси, абалон и другие), существует великое множество.

Картина времен династии Юань (XIII-XIV века), изображающая трех игроков в го.


Когда мы говорили об анализе игр этого типа, мы упомянули понятие выигрышной стратегии, то есть множества условий, позволяющих одному из игроков (как правило, речь идет об играх только для двух игроков) определить, как следует действовать в каждый момент времени, учитывая ходы, сделанные противником, чтобы одержать победу вне зависимости от ходов соперника. Существование выигрышной стратегии предполагает, что игра оканчивается победой одного из игроков, но в некоторых играх возможна и ничья, например, как в шахматах. В этом случае нужно вести речь о стратегиях, которые позволяют никогда не проигрывать. Когда стратегическая игра не может завершиться ничьей, можно убедиться, что существует выигрышная стратегия для первого или второго игрока, но это не означает, что подобную стратегию можно будет точно определить: игра может быть весьма сложной.


БИБЛИЯ ВЫИГРЫШНЫХ СТРАТЕГИЙ

Возможно, наиболее обширный труд о стратегических играх носит название «Выигрышные стратегии ваших математических игр» в четырех томах (издан в 1982 году). Его авторами являются трое выдающихся математиков XX века: Элвин Берлекэмп (род. в 1940 году), профессор компьютерных наук в Калифорнийском университете в Беркли с 1971 года; Джон Конвей (род. в 1937 году), автор важных работ по теории конечных групп, профессор Кембриджского и Принстонского университетов, создатель игры «Жизнь», моделирующей жизнь клеток; Ричард Гай (род. в 1916 году), почетный профессор университета Калгари. Книга посвящена играм со следующими свойствами:

1. Это игры для двух игроков, делающих ходы поочередно.

2. Это игры, в которых определено одно начальное положение и существует конечное число ходов.

3. Это игры с полной информацией: в любой момент игрокам известны все возможные ходы.

4. Ни в начале игры, ни в процессе выполнения ходов нет места неопределенности.

5. Ход партии не допускает повторения ходов. Тот игрок, который не может совершить ход, проигрывает.

Обложка первого тома книги Берлекэмпа, Конвея и Гая Winning ways for your mathematical plays


Допустим, что некая игра для двух игроков имеет следующие свойства:

1. В любой момент времени каждый игрок обладает всей информацией, чтобы решить, каким должен быть следующий ход.

2. Игроки совершают ходы поочередно.

3. В игре полностью отсутствует элемент неопределенности.

4. Любая партия оканчивается победой одного из игроков после конечного числа ходов.

При этих условиях можно показать, что обязательно существует выигрышная стратегия для одного из двух игроков: первого (игрок А) или второго (игрок Б). Допустим, что выигрышной стратегии для игрока А не существует, иными словами, для игрока Б всегда будет существовать ход, на который у игрока А не найдется достойного ответа, и он проиграет. Это означает, что победит игрок Б. Таким образом, для него существует выигрышная стратегия. Подобные рассуждения лишь доказывают, что в подобных играх всегда существует выигрышная стратегия, но это не означает, что ее будет легко обнаружить.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.