Десять великих идей науки. Как устроен наш мир. - [148]
Мы видели, что решения различных уравнений порождают классы чисел, известные под общим названием «алгебраические числа». Решения уравнений, подобных 2x = 1, дают нам рациональные числа (в данном случае x = 1/2), в то время как уравнения, подобные x>2 = 2, дают нам иррациональные числа (в данном случае x = √2); числа, не являющиеся решениями уравнений, подобных этим, являются трансцендентными числами (как x = 2>√2). Натуральные числа можно представить как решения уравнений, подобных x − 2 = 1 (с решением x = 3), а отрицательные числа как решения уравнений, подобных x + 2 = 1 (с решением x = −1). Но существует простое уравнение, выпадающее из этого списка: каково решение уравнения x>2 + 1 = 0? Ни одно из чисел введенных ранее не является его решением, поскольку квадрат любого из них положителен и, будучи прибавлен к 1, не может дать нуля. В значительной мере потому, что математики не хотели признавать, что некоторые уравнения не имеют решения, они ввели понятие мнимого числа i, которое является решением уравнения x>2 + 1 = 0; другими словами, x = √(−1). Поскольку они — на самом деле, Декарт — считали, что чисел, подобных i и i, умноженному на любое число, в действительности не существует, они и назвали их «мнимыми».
Вскоре стало ясно, что некоторые уравнения, такие как x>2 − x + 1 = 0, имеют решения, представляющие собой комбинации действительных и мнимых чисел, в данном случае x = ½ + (½√3)i и x = ½ − (½√3)i. Эти комбинации названы комплексными числами; первый член ½ в этом примере является обычным «действительным» числом, а второй член ±(½√3)i является мнимым. Были созданы специальные правила для проведения вычислений с этими двухкомпонентными действительными числами, но они явились естественным расширением правил, которые мы используем для действительных чисел, и не вызывают особых трудностей.
Действительные числа могут быть, как мы видели, упорядочены в прямую линию. Комплексные числа становятся немного менее таинственными, как только мы понимаем, что каждое из них можно изобразить точкой на плоскости, на которой действительная компонента числа равна расстоянию от начала координат по горизонтальной оси, а мнимая компонента равна расстоянию от начала координат по вертикальной оси (рис. 10.5). Другими словами, комплексные числа на самом деле являются парами чисел: комплексное число 1 + 2i, например, является просто двухкомпонентным числом (1, 2), которое мы можем представить точкой с координатами 1 см по горизонтальной оси и 2 см по вертикальной оси. Введем другой способ, посредством которого мы можем представить себе комплексное число в виде костяшки домино, с действительной частью числа на левой половине ее прямоугольника и с мнимой частью на правой половине. В будущем, если вы вынете костяшку домино 4 + 3, представляйте себе ее в виде комплексного числа 4 + 3i. Если вы чувствуете себя дискомфортно среди образов такого рода, не беспокойтесь: комплексные числа, если не считать мимолетных упоминаний, больше не появятся в этой главе.
Рис. 10.5. Комплексное число является двухкомпонентным числом и как таковое может быть представлено точкой на плоскости. Например, комплексное число 2 − 1i обозначается точкой с координатами 2 единицы по горизонтальной оси и 1 единица вниз по вертикальной оси. Операции с комплексными числами есть просто операции с двухкомпонентными объектами.
В этом разделе я обращусь к двум явно наивным вопросам: сколько существует чисел, и что они такое, в конце концов. Можно подозревать, что ответы будут сложнее вопросов, что в итоге, вероятно, и составляет смысл хорошо поставленного вопроса.
На первый взгляд существует бесконечное число натуральных чисел, ибо в принципе мы можем продолжать счет вечно: одна овца, две овцы, …. Мы говорим, что «мощность» натуральных чисел бесконечна. Изобретательный способ демонстрации мощности приписывается немецкому математику Давиду Гильберту, который появится позже в более серьезном контексте, и называется отель Гильберта. «Отель Гильберта» состоит из бесконечного числа комнат, и однажды ночью все комнаты оказываются занятыми. Прибывает путешественник, не заказавший комнату предварительно. «Нет проблем!» — кричит Гильберт (администратор): он уговаривает всех постояльцев переехать в соседнюю комнату, освобождая таким образом первую комнату и получая возможность устроить в ней вновь прибывшего. На следующую ночь подъезжает бесконечное число путешественников, не заказавших комнату предварительно. «Нет проблем!» — снова кричит обладающий неограниченными ресурсами Гильберт. Он уговаривает всех постояльцев упаковаться и переехать в комнату с номером вдвое большим, чем номер занимаемой ими комнаты, освобождая комнаты с нечетными номерами и получая возможность устроить всех вновь прибывших.
Пока, возможно, все хорошо. Но как насчет рациональных чисел, чисел, получаемых делением одного натурального числа на другое: сколько их существует? «Очевидным» ответом является то, что рациональных чисел больше, чем натуральных, потому что их ужасно много между 0 и 1 (например, 1/4, 1/2, 53/57 и многие другие), столь же много между 1 и 2 (например, 3/2, 5/3, 79/47 и многие другие) и так далее. Забавно, что правильным ответом, однако, будет такой: количество рациональных чисел таково же, как и количество натуральных чисел. Их число бесконечно, столь же бесконечно, как и число натуральных чисел.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.