Цифровая стеганография - [7]

Шрифт
Интервал

1.2. Встраивание сообщений в незначащие элементы контейнера

Цифровые изображения представляют из себя матрицу пикселов. Пиксел — это единичный элемент изображения. Он имеет фиксированную разрядность двоичного представления. Например, пикселы полутонового изображения кодируются 8 битами (значения яркости изменяются от 0 до 255).

Младший значащий бит (LSB) изображения несет в себе меньше всего информации. Известно, что человек обычно не способен заметить изменение в этом бите. Фактически, он является шумом. Поэтому его можно использовать для встраивания информации. Таким образом, для полутонового изображения объем встраиваемых данных может составлять 1/8 объема контейнера. Например, в изображение размером 512х512 можно встроить 32 килобайта информации. Если модифицировать два младших бита (что также почти незаметно), то можно скрытно передать вдвое больший объем данных.

Достоинства рассматриваемого метода заключаются в его простоте и сравнительно большом объеме встраиваемых данных. Однако, он имеет серьезные недостатки. Во-первых, скрытое сообщение легко разрушить, как это показано в третьей главе. Во-вторых, не обеспечена секретность встраивания информации. Нарушителю точно известно местоположение всего ЦВЗ. Для преодоления последнего недостатка было предложено встраивать ЦВЗ не во все пикселы изображения, а лишь в некоторые из них, определяемые по псевдослучайному закону в соответствии с ключом, известному только законному пользователю. Пропускная способность при этом уменьшается.

Рассмотрим подробнее вопрос выбора пикселов изображения для встраивания в них скрытого сообщения.

В работе [7] отмечается неслучайный характер поведения младшего значащего бита изображений. Скрываемое сообщение не должно изменять статистики изображения. Для этого, в принципе возможно, располагая достаточно большим количеством незаполненных контейнеров, подыскать наиболее подходящий. Теоретически возможно найти контейнер, уже содержащий в себе наше сообщение при данном ключе. Тогда изменять вообще ничего не надо, и вскрыть факт передачи будет невозможно. Эту ситуацию можно сравнить с применением одноразового блокнота в криптографии. Метод выбора подходящего контейнера требует выполнения большого количества вычислений и обладает малой пропускной способностью.

Альтернативным подходом является моделирование характеристик поведения LSB. Встраиваемое сообщение будет в этом случае частично или полностью зависеть от контейнера. Процесс моделирования является вычислительно трудоемким, кроме того, его надо повторять для каждого контейнера. Главным недостатком этого метода является то, что процесс моделирования может быть повторен нарушителем, возможно обладающим большим вычислительным ресурсом, создающим лучшие модели, что приведет к обнаружению скрытого сообщения. Это противоречит требованию о независимости безопасности стегосистемы от вычислительной мощности сторон. Кроме того, для обеспечения скрытности, необходимо держать используемую модель шума в тайне. А как нам уже известно, нарушителю неизвестен должен быть лишь ключ.

В силу указанных трудностей на практике обычно ограничиваются поиском пикселов, модификация которых не вносит заметных искажений в изображение. Затем из этих пикселов в соответствии с ключом выбираются те, которые будут модифицироваться. Скрываемое сообщение шифруется с применением другого ключа. Этот этап может быть дополнен предварительной компрессией для уменьшения объема сообщения.

1.3. Математическая модель стегосистемы

Стегосистема может быть рассмотрена как система связи [8].

Алгоритм встраивания ЦВЗ состоит из трех основных этапов: 1) генерации ЦВЗ, 2) встраивания ЦВЗ в кодере и 3) обнаружения ЦВЗ в детекторе.

1) Пусть

есть множества возможных ЦВЗ, ключей, контейнеров и скрываемых сообщений, соответственно. Тогда генерация ЦВЗ может быть представлена в виде


,
, (1.2)


где

- представители соответствующих множеств. Вообще говоря, функция F может быть произвольной, но на практике требования робастности ЦВЗ накладывают на нее определенные ограничения. Так, в большинстве случаев,
, то есть незначительно измененный контейнер не приводит к изменению ЦВЗ. Функция F обычно является составной:


где
и
, (1.3)


то есть ЦВЗ зависит от свойств контейнера, как это уже обсуждалось выше в данной главе. Функция G может быть реализована при помощи криптографически безопасного генератора ПСП с K в качестве начального значения.

Для повышения робастности ЦВЗ могут применяться помехоустойчивые коды, например, коды БЧХ, сверточные коды [9]. В ряде публикаций отмечены хорошие результаты, достигаемые при встраивании ЦВЗ в области вейвлет-преобразования с использованием турбо-кодов. Отсчеты ЦВЗ принимают обычно значения из множества {-1,1}, при этом для отображения {0,1}→{-1,1} может применяться двоичная относительная фазовая модуляция (BPSK).

Оператор T модифицирует кодовые слова

, в результате чего получается ЦВЗ
. На эту функцию можно не накладывать ограничения необратимости, так как соответствующий выбор G уже гарантирует необратимость F. Функция T должна быть выбрана так, чтобы незаполненный контейнер


Рекомендуем почитать
Юный техник, 2015 № 04

Популярный детский и юношеский журнал.


Юный техник, 2015 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.