Что, если Ламарк прав? Иммуногенетика и эволюция - [20]
Эксперименты Ландштейнера послужили основой первой оценки размера потенциального репертуара антител. Тридцать лет назад был обычным такой комментарий генетических и эволюционных следствий, вытекающих из результатов Ландштейнера: «Тем не менее, трудно понять, какие преимущества дает существование генов для синтеза антител против многих недавно синтезированных органических соединений, таких как п-амино-бензоат, 2,4-динитробензол и т. д., которые совершенно не похожи на микробные патогены. Сохранение такого избытка генетического багажа в течение бесконечного времени до тех пор, пока не появится мишень для них, кажется неправдоподобным»
На самом деле это неправдоподобно в рамках дарвиновского естественного отбора генов, кодирующих определенные специфичные антитела.
Итак, к 1930-м годам стало ясно, что потенциальный репертуар антител должен быть гигантским и насчитывать миллионы или больше специфичностей. Ответ на другой фундаментальный вопрос все еще не был ясен: как могла в ходе эволюции появиться система, способная производить антитела, которые никогда не были частью эволюционной истории данного вида? Если инфекционные болезни были орудием эволюции современной иммунной системы, то, несомненно, частные и специфические молекулярные характеристики множества возможных антигенов никогда не были ее движущей силой. Правильнее, по-видимому, считать, что в ходе эволюции возникла биологическая стратегия, способная производить иммунный ответ на неожиданное.
Эволюция иммунной системы
Будем считать, что инфекционные болезни были главной, если не единственной, селективной силой в эволюции иммунной системы позвоночных. Тогда мы можем довольно легко рассматривать этот процесс в терминах дарвиновского «выживания наиболее приспособленной» иммунной системы. Если это так, то гены иммуноглобулинов (Ig), ответственные за кодирование антител, передаются потомкам через половые клетки, и их сохранение в ходе эволюции определяется теми же дарвиновскими правилами, которым подчинены и другие гены. Теперь мы критически рассмотрим сказанное.
Детальные сравнительные исследования разных видов беспозвоночных (насекомых) и позвоночных показывают, что система приобретенного иммунитета, которую мы сейчас обсуждаем, существует у хрящевых рыб (акул и скатов) и, следовательно, появилась по крайней мере 400—500 миллионов лет назад. У этих рыб есть гены, родственные генам вариабельной области Ig (IgV), или генам рецепторов Т-клеток (ТкР) [5]. В исследованиях Роберта Райсона (Raison) из Технологического университета Сиднея и других показано, что еще более примитивные позвоночные — круглоротые (миксины и миноги) — не имеют системы приобретенного иммунитета; у них нет ни IgV, ни ТкР-генов. До сих пор идет поиск недостающего звена. Однако пока не известны эволюционные переходы между кругло-ротыми и хрящевыми рыбами. И нет никаких гарантий, что недостающие звенья когда-нибудь будут найдены, так как все они, возможно, вымерли. На рис. 3.4 показаны основные представители позвоночных, у которых работа иммунной системы изучена подробно. Даже у холоднокровных позвоночных — рыб — можно обнаружить основные элементы системы приобретенного иммунитета теплокровных. Иммунные системы всех изученных позвоночных имеют следующие свойства:
• они способны создавать гигантское разнообразие антител и Т-клеток, обеспечивающее ответ на практически любой антиген;
• они способны к усиленному ответу при повторной встрече с антигеном (имеют память);
• они способны обеспечивать аутотолерантность.
Рис. 3.4. Позвоночные, у которых обнаружена сходная с млекопитающими система иммунитета.
Если мы иммунизированы коклюшной или столбнячной вакциной, наша иммунная система «помнит» первую встречу с этими антигенами, позволяя нам быстрее и сильнее реагировать на новую встречу с тем же самым антигеном образованием более высоких концентраций антител в крови. Эти свойства — направляемое антигеном изменение соматических клеток, специфичность, аутотолерантность и память — являются признаками иммунных систем всех позвоночных. У акул и других холоднокровных животных из-за низких температур окружающей среды иммунный ответ медленнее, чем у теплокровных наземных позвоночных.
Большая часть информации о клеточных и молекулярных процессах в иммунной системе получена экспериментальной иммунологией в опытах с иммунизацией мышей инбредных линий. Также много данных получено в клинических наблюдениях; сейчас мы знаем, что практически любая клетка, молекула и ген, обнаруженные у мышей, существуют и у человека. Хотя на других позвоночных проведено гораздо меньше исследований, очевидно, что при переходе от холоднокровных хрящевых рыб к теплокровным наземным животным сложность иммунной системы возрастала. Например, мы знаем, что генетическая стратегия, используемая для сохранения длинных последовательностей ДНК, кодирующих большое число различных антител у акул, менее экономична, чем у мышей и человека. У кроликов последовательности ДНК используются еще более эффективно. Однако самая эффективная система описана у кур и других птиц. Это станет понятным, когда мы обсудим уникальную природу генов, кодирующих антитела.
Академик АМН СССР рассказывает об иммунитете, силах, которые защищают наш организм от микробов, вирусов, раковых заболеваний, хранят неповторимую индивидуальность нашего телесного 'я', говорит о болезнях, возникающих при нарушении иммунитета и мерах борьбы с ними, а также об использовании клеток иммунной системы в биотехнологии (производстве лечебных и диагностических препаратов, сверхчувствительных реагентов), об использовании 'раковых клеток в мирных целях'. Издание рассчитано на самые широкие круги читателей.
Иммунология — наука о сохранении индивидуальности организма, о его иммунитете. Познание явлений иммунитета ведет к раскрытию тайн рождения и старения организмов, причин отторжения органов при их трансплантации и возникновения опухолей, к полной победе над инфекциями. О процессе этого познания, полного драматизма и парадоксов, и рассказывает автор книги. Она может быть полезна лекторам, пропагандистам, слушателям народных университетов естественнонаучных знаний и всем, кто интересуется современными проблемами биологии.
Расшифровка генетического кода, зашита от инфекционных болезней и патент на совершенную фиксацию азота, проникновение в тайну злокачественного роста и извлечение полезных ископаемых из морских вод — неисчислимы сферы познания и практики, где изучение микроорганизма помогает добиваться невиданных и неслыханных результатов… О достижениях микробиологии, о завтрашнем дне этой науки рассказывает академик АМН СССР О. Бароян.
Acacia mangium — это быстрорастущее тропическое вечнозеленое дерево, которое при благоприятных условиях может вырасти до 30 м в высоту и до 50 см в толщину. Низинный вид, связанный с окраинами тропических лесов и нарушенными, хорошо дренированными кислыми почвами. Аборигенное растение для Папуа, Западной Ириан-Джайи и Молуккских островов в Индонезии, Папуа-Новой Гвинеи и северо-восточной части Квинсленда в Австралии. Из-за быстрого роста и устойчивости к очень бедным почвам A. mangium была завезена в некоторые страны Азии, Африки и западного полушария, где она используется в качестве плантационного дерева.
«Ой, фу!» Табу в нашем мире живут столько же, сколько существует общество. Все мы стремимся быть ухоженными, хорошо пахнуть, но стоит нам остаться наедине с самим собой, как наше тело начинает жить собственной жизнью: палец сам тянется к ноздре – избавиться от накопившегося содержимого, нос – понюхать собственную кожу на предмет чужеродных запахов, а живот… Живот спешит скорее «выдохнуть» все, что копил в себе целый день. Все это – естественно, но мы упорно продолжаем этого стесняться. А стеснение нередко приводит к неприятным казусам в повседневности, личной жизни и даже к проблемам со здоровьем.
В книге освещены важнейшие события в познании живой природы и формирование современных отраслей биологии до начала XX в. Отобраны факты, имена и события, которые характеризуют магистральные линии развития биологии, раскрывают характер и уровень биологических знаний соответствующих эпох. Подобная книга на русском языке издается впервые. Она рассчитана на широкий круг научных работников, преподавателей, аспирантов и студентов биологических факультетов. Илл. 132. Библ. на 36 стр. Книга подготовлена авторским коллективом в составе: Е.Б.
В книге известного американского писателя рассматривается широкий спектр явлений, не получивших в рамках современной науки своего объяснения. Автором выделены более 20 таких загадок, в том числе: дает ли история Большого Взрыва исчерпывающее объяснение процесса возникновения Вселенной; возникла жизнь на Земле или была занесена из космоса; какова природа гравитации; сможем ли мы когда-нибудь предсказывать землетрясения и извержения вулканов; каков возраст Вселенной; существуют ли множественные миры; каково будущее Вселенной; не были ли динозавры теплокровными животными; как ориентируются птицы в процессе своих дальних миграций; откуда черпали индейцы майя свои познания в астрономии.Для широкого круга читателей.