Что делать, когда машины начнут делать все. Как роботы и искусственный интеллект изменят жизнь и работу - [22]

Шрифт
Интервал

Данные могут казаться невесомой абстракцией (если вам интересно, все электроны Интернета весят, вероятно, как две клубники>7). Но хотя данные весят так мало, они обладают огромной ценностью, когда применяются в правильном месте и в правильное время. Обширное число данных должно быть собрано, сохранено, защищено, проанализировано и сделано доступными. Именно поэтому нам требуются большие системы баз данных, которые будут стабильными, эластичными и проверенными (какими бы крутыми ни казались новые блестящие приборы). Приобретает популярность новое поколение баз данных (например, Hadoop), однако никуда не делись имеющие клиентскую базу в целом более чем в семьсот сорок тысяч компаний Oracle и SAP. А с ними и другие заслуженные «торговцы оружием» в лице IBM, Microsoft и иных главных предприятий-поставщиков ПО. В цифровой экономике нам по-прежнему будут так же нужны высококачественные учетные системы (как традиционные, так и появляющиеся вновь), как нужны электросети с переменным током.

Инфраструктура

Как и любая производственная машина, новая машина нуждается в энергии и «трубопроводе». Инфраструктура включает все сетевые соединения, серверы, источники электроэнергии и все прочее, что заставляет машину загудеть. В нынешних системах все элементы управляются, как правило, или непосредственно из IT-департамента, или внешним поставщиком услуг, или – что все более распространено сегодня – облачным провайдером. Обязательно наличие мобильных сетей, как правило, являющихся основным носителем данных. Чтобы обладать должной вычислительной мощностью, все интеллектуальные системы, работают они на серверах Amazon, где-то в Googleplex или в вашем собственном центре обработки данных, нуждаются в высокоэффективном, всегда включенном трубопроводе.

Интеллектуальные системы в действии

«Анатомия» новых машин может показаться чем-то абстрактным, хотя эти части соединены между собой в настоящую новую машину, видимую в реальном мире. Уже многое было сказано о Netflix, но мы хотим сказать о другом. Все мы знакомы с этой платформой потокового мультимедиа, являющейся отличной иллюстрацией того, как компания, применяющая новую машину, новые сырьевые материалы и ориентированные на них бизнес-модели, переворачивает бизнес каждый день и в штатном режиме.

Машина, ставшая Netflix (благодаря ИИ)

В 2016 году Netflix занимал примерно 35% всего интернет-трафика в Северной Америке и имел весьма оживленные ТВ-сети>8. Если попытаться разобрать Netflix на косточки, мы увидим анатомию новой машины в действии (см. табл. 4.2).

Таблица 4.2. Анатомия интеллектуальной системы Netflix


Что такое «хорошо»? Атрибуты успешной интеллектуальной системы

Есть большая разница между тем, чтобы иметь все необходимые ингредиенты новой машины, и действительно получить их, для работы на высоком уровне. Интеллектуальная система, которая поможет вам стать Хусейном Болтом в любой гонке, из тех, где участвуете, будет иметь все или большинство из этих характеристик.

Умная, а не глупая. Эффективные новые машины становятся лучше, более мощными и ценными, по мере роста. Единственный правильный тест для хорошего ИИ – с поступлением новых данных завтра он становится умнее, чем был сегодня. В любом случае, лучшие интеллектуальные системы высасывают информацию из широкого круга источников, что позволяет достичь массы данных, требуемой для получения инсайтов и создания персонифицированного восприятия. Сегодняшние мастера цифровых данных говорят однозначно: «Все дело в данных».

Открытые, а не закрытые. Интеллектуальные системы, способные полностью раскрывать свой потенциал, как правило, больше открытые, чем закрытые. Подумайте о Tesla, раздающей свои патенты, и Uber с открытыми API: обе эти политики помогли сгенерировать новые решения, построенные на винтиках и шестеренках искусственного интеллекта компаний. Один из ярких примеров конкурентной борьбы разворачивается сегодня между Amazon и Walmart.com. Если использовать систему анатомии, приведенную в этой главе, обе компании выглядят похоже. И покупательский опыт, получаемый через приложения, одинаковый, плюс-минус 10%. Однако если смотреть через призму API, то компании не могли бы выглядеть более разными. У Amazon – массив из более чем 325 API, что открывает его платформу другим. У Walmart, Target, Macy’s и Sears на сентябрь 2015 года их три или меньше>21. Открытость обязательна для цифрового успеха, поскольку полностью оформленная, наполненная содержанием экосистема будет более мощной, чем среда с замкнутым развитием.

Умные руки, не только боты. Самые успешные узкие ИИ включают участие людей. Одна из самых распространенных ошибок, которую мы наблюдали в поездках, состоит в том, что компании пытаются полностью избавиться от человеческого фактора>22. Есть множество вещей, которые машина не может делать так же хорошо, как можем мы (по крайней мере, в те временные рамки, когда надо принимать значимые бизнес-решения). Меняющие правила игры интеллектуальные системы создаются ради интеграции ИИ с человеком, где объединяется лучшее из того, что может компьютер и умеют люди (больше о «расширении» ИИ в главе 9). Некоторые из инструментов, такие как робот в роли отельного консьержа, пытающийся подражать тому, что так хорошо делает человек, – верный способ потерять время и деньги.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.


Кремлевская школа переговоров

«Кремлевская школа переговоров» приобрела мировую известность из-за особо жесткого стиля ведения переговоров, которого придерживались ее адепты. Эта книга рассказывает о главных постулатах рассматриваемой школы и описывает различные техники ведения агрессивных переговоров.Игорь Рызов – один из ведущих российских экспертов в области ведения переговоров. За 18 лет опыта ведения коммерческой деятельности ему приходилось слышать «нет» чаще, чем в свое время советским дипломатам. В этой книге он расскажет о том, как выходить победителем из любых споров и направлять переговоры в выгодное для вас русло.Книга также издавалась под названием «Я всегда знаю, что сказать.


Теория везения

Скотт Адамс отбрасывает фантики и делится своим опытом и выводами, к которым он пришел за свою жизнь: «Удачу можно организовать, ну или что-то типа того». Он пострадал от неудач в своей жизни больше, чем кто-либо, кого вы когда-либо встречали. Он прошел путь от несчастного офисного планктона к автору всемирно известных комиксов Dilbert. Стратегия достижения успеха Скотта заключается в том, чтобы лелеять случившуюся неудачу, обнять ее, а затем положить в карман и не забывать. Всегда помните, что неудача — это ваш товарищ.


Теория каст и ролей

Много ли среди нас тех, кто может уверенно сказать – куда идти, где мое место, чего я хочу, как жить и где жить?! Преобладающее большинство людей на этой планете толком не знают чего они хотят, не представляют окружающего мира, не имеют правильных целей, да и вообще обладают весьма узким кругозором. Такое явление связано с тем, что наш мир за последние 50 лет стал невероятно сложным, ушли упрощенные смыслы жизни, общество становится все более разделенным, сокращаются ниши для свободной инициативы. Эта революционная книга обрела тысячи приверженцев еще до официальной публикации! В ней автор книги Алекс Крол делит общество на касты и описывает роли людей в них.


Продавец обуви

Nike — один из самых узнаваемых мировых брендов. Создатель компании — Фил Найт — один из богатейших людей, хотя еще в юности он не мог себе позволить купить кроссовки Adidas.50 лет назад студент Орегонского университета и бегун на средние дистанции Фил Найт занял у отца 50 баксов и начал перепродавать кроссовки из Японии. Сегодня годовой оборот компании Nike составляет 30 миллиардов долларов. А пара «найков» найдется в шкафу у каждого — от президента до подростка.Фил Найт — человек-загадка, он редко дает интервью.