Черная маска из Аль-Джебры - [7]
— Нет, нет, — закричала первая Двоечка, — из трех два — это мы умеем.
— Это мы умеем, — сейчас же отозвалась другая.
Мы очень рассердились на маму, которая мучает детей такими ужасными задачами. Но мама никого и не думала мучить. Она просто отлучилась куда-то ненадолго и вскоре появилась на платформе.
Это была симпатичная Двойка. Она приветливо поздоровалась, и Сева (ох уж этот Сева!) с места в карьер попросил ее рассказать, как устроена воздушная монорельсовая дорога. Я незаметно дернула его за куртку — неудобно все-таки! Но Двойка охотно согласилась стать нашим экскурсоводом.
— Ведь устройство этой дороги, — пояснила она, — имеет прямое отношение к тем правилам, которые я собираюсь растолковать моим близняшкам.
Вместе с ней мы снова подошли к Нулевой станции и увидели большой щит с множеством кнопок и клавиш. Как это мы его раньше же заметили? Кроме кнопок, там были еще микрофоны.
Хочешь знать, для чего все это нужно? Сейчас объясню.
Я ведь уже говорила, что эта дорога особенная. Здесь нет ни расписаний, ни запасных путей, ни депо. Никаких кондукторов, диспетчеров, кассиров, проводников… даже поездов. Каждый пассажир может в любое время вызвать вагончик и ехать куда вздумается. Станции здесь не имеют названий. Они обозначаются числами. Захочешь поехать на станцию номер 2782 — нажимаешь кнопку «вызов» и говоришь в микрофон нужное число.
И тут же, как Сивка-Бурка вещий Каурка, на Нулевой станции появляется совершенно бесцветный прозрачный вагончик, такой прозрачный, что сразу его и не заметишь. Садишься в него и через несколько секунд попадаешь туда, куда нужно.
— Очень хорошо! — обрадовался Сева. — Вот я вызову вагончик и поеду на станцию… ну, скажем, 75!
Он нажал кнопку и назвал число. На Нулевой станции сейчас же появился вагончик. Сева хотел в него войти, но мама Двойка живо оттащила его назад.
— Что вы делаете? — закричала она в ужасе. — Разве вам туда можно?
— А что? Это же совсем недалеко! Станция 75.
— Да, 75, но не вправо, а влево от нуля! Вы случайно задели рычаг, переключающий направление.
Она указала на большой минус, загоревшийся в воздухе слева от светящегося нуля.
— Знаете вы, что это такое?
— Минус!
— Не просто минус, а светофор, открывающий путь к отрицательным числам. И вам туда ни в коем случае нельзя.
— Но почему? — огорчились мы.
— Да потому, что отрицательные числа — воображаемые числа. И свободный проезд влево от нуля разрешен только нам, карликанам.
— Значит, мы туда никогда не попадем?
— Отчего же, — улыбнулась Двойка, — только для этого вам понадобится другой транспорт: воображение.
Все сразу приуныли, но мама Двойка заметила, что воображаемое путешествие иной раз ничуть не хуже настоящего. Нашего Севу это, конечно, не устраивало.
— На что нужны воображаемые числа — числа, которых не существует?
— Что вы такое говорите? — возмутилась мама Двойка. — Да еще при маленьких! Дети, не слушайте!
Двоечки послушно отвернулись.
— Отрицательные числа очень нужны, — продолжала мама Двойка, — и я это сейчас докажу. Дети, можете повернуться.
Двоечки не заставили себя упрашивать.
— Вам было задано: вычесть из двух три. Решили вы мою задачу?
— Мы решали, но она не решается! — сказала первая.
— Не решается! — подтвердила вторая.
— Тогда я покажу вам, как это делается. Сейчас, — добавила мама Двойка, обращаясь к нам, — вы увидите, что на нашей дороге не только ездят, но и учатся производить разные действия с числами.
Она прикоснулась к кнопке и негромко сказала в микрофон:
— Два!
Справа от Нулевой станции зажегся знак плюс и против числа два на монорельсе появился вагончик, на этот раз не прозрачный и не бесцветный, а ярко-красный.
— Начнем вычитать из двух три. Сперва вычтем один.
Двойка нажала кнопку, и вагончик передвинулся влево на станцию 1.
— Теперь вычтем еще один.
Раз — и вагончик исчез.
— Вот ничего и не осталось! — позлорадствовал Сева.
— Как это — не осталось! — возразила Двойка. — Посмотрите получше.
И мы увидели, что на Нулевой станции вагончик есть. Только из красного он превратился в бесцветный и прозрачный. Оттого мы его и не заметили.
Но Севу не так-то легко смутить.
— Ну и что ж, — сказал он, — пусть вагончик на нуле есть, но ведь нуль — это ничто, пустое место!
— Тут-то вы и неправы! — улыбнулась Двойка. — Нуль тоже число.
— Хоть бы и так, — горячился Сева, — но он все-таки меньше единицы. Как же из него эту самую единицу вычесть?
— Сейчас увидите.
Двойка нажала еще какие-то кнопки. Слева от светящегося нуля вспыхнул знак минус. И не успели мы глазом моргнуть, как вагончик очутился слева от Нулевой станции точно против числа минус единица. Только теперь из бесцветного и прозрачного он уже стал синим.
— Вот вам решение. Два минус три равно минус единице: 2 — 3 = -1.
Понятно вам теперь, для чего нужны отрицательные числа?
Сказать по правде, мы еще ничего не понимали. Просто нам всем понравилось смотреть, как ловко вагончики меняют цвета. Особенно Севе.
— Можно и мне повычитать? — спросил он и, не дожидаясь разрешения, приступил к делу.
Сначала вычел из трех пять — получил минус два: 3 — 5 = -2.
Потом из семи одиннадцать. Получилось минус четыре: 7 — 11 = -4.
В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».
Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку.
Заблудиться в лабиринте чисел очень просто. Но если вашим проводником согласится стать сама многоуважаемая Арифметика, путешествие удастся на славу. Каждая остановка, а их будет тридцать две (по числу букв алфавита) подарит вам незабываемые впечатления, а задачи, которые Арифметика иногда будет подкидывать своим спутникам, внесут ещё большее разнообразие в этот и без того прихотливый маршрут. Замечательная книга о приключениях мальчика Чита в Лабиринте Чисел и о его проводнице — Арифметике. В увлекательной форме знакомит детей со многими математическими и логическими понятиями.
Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники.