Черная маска из Аль-Джебры - [30]

Шрифт
Интервал

— Вот именно, вот именно! — умилился Весовщик и так закивал головой, что вот-вот борода отвалится! Потом он перестал кивать и взглянул на Севу. Тот стоял надутый, взъерошенный, как воробей после драки.

— Вижу, — сказал Весовщик, — тебе во что бы то ни стало хочется подставлять любые числа под все буквы. Так и быть, попробуй еще разок.

На весах засветилось равенство: 3а + 2b = 2а + 3b — b + а.

— Нет уж, спасибо! — Сева даже руками замахал. — Теперь меня не проведешь.

— Зря отказываешься. В этом примере можно подставлять вместо а и b любые числа, какие вздумается.

Весовщик подставил вместо а — Четверку, вместо b — Тройку: 3 × 4 — 2 × 3 = 2 × 4 + 3 × 3 — 3 + 4.

И сейчас же числа эти исчезли, уступив место числу 18 на каждой чашке весов: 18 = 18.

Сева растерянно поморгал глазами. Опять он попал впросак. Но почему?

— Да потому, — ответил Весовщик, — что это равенство особое. Оно называется тождеством. Какими числами ни заменяй буквы в тождестве, равенство все равно сохранится.

— Но как отличить тождество от обычного равенства, не подставляя чисел вместо букв? — спросила я.

— Для этого надо обе части равенства сделать совершенно одинаковыми. Смотрите!

Мы увидели на весах прежнее тождество: 3а + 2b = 2а + 3b — b + а.

Тут Весовщик протянул руки к правой чашке весов и как закричит:

— Подобные, приведитесь!

И сейчас же 2а в правой части соединились еще с одним а, 3b, из которых вычли одно b, превратились в 2b, и на весах образовалось другое выражение: За + 2b = 3а + 2b.

Покончив с тождеством, Весовщик взмахнул палочкой, и на ней очутился металлический обруч. С таким у нас занимаются художественной гимнастикой.

Я чуть не фыркнула: неужели Весовщик собирается танцевать с обручем? Вот будет весело! Но танцевать он не стал, а достал веревочку и измерил ширину круга в самом его широком месте.

— Эта ширина называется диаметром круга, — пояснил он. Хотя кто же этого не знает?

Потом Весовщик стал укладывать этот веревочный диаметр по обручу, чтобы измерить длину окружности. Сделал отметку, уложил веревочку один раз, второй, третий, но до отметки все еще не дошел. Выходит, длина окружности больше, чем три ее диаметра. Весовщик стал откладывать веревочку в четвертый раз, но ее оказалось слишком много. На глаз получалось, что надо отложить только одну пятую веревочки. Весовщик отрезал одну пятую, но и этот кусочек оказался длиннее, чем нужно. Значит, длина окружности меньше чем три и одна пятая диаметра.

Тогда Весовщик разрезал этот кусочек веревки пополам, и он стал равен одной десятой диаметра. Но теперь его не хватило до отметки. Значит, длина окружности меньше чем три и одна пятая, но больше чем три и одна десятая диаметра.

Долго Весовщик возился с этой задачей, а потом улыбнулся и сказал:

— О мои юные друзья, я пошутил. Я и раньше знал, что решить эту задачу точно невозможно. Мне только хотелось, чтобы вы убедились в этом сами. Во сколько раз длина окружности больше своего диаметра, можно подсчитать только приближенно. Вычислите это число с точностью хоть до миллиона знаков, оно все равно не будет совершенно точным.

— Значит, это — иррациональное число? — спросил Олег.

— Конечно! — подтвердила Эф. — Мы можем указать, где оно живет на монорельсовой дороге, но выразить его точным числом нельзя. В Аль-Джебре его обозначают греческой буквой Пи. Смотрите, вот оно.

π

На левую чашку весов вспорхнула буковка, слегка напоминающая русское «п», а на правой появилось число 3,14.

— Число Пи приближенно равно трем целым и четырнадцати сотым, — объяснил Весовщик.

Он взмахнул палочкой. Чашка с буквой Пи чуть-чуть опустилась, а в кошачьем глазке появились две волнистые линии:

— Это знак приближенного равенства, — пояснила Эф. — На самом деле Пи немножко больше чем 3,14. Поэтому левая чашка слегка перевешивает.

Снова стукнулись два медных подноса, и Главный Весовщик исчез. Прямо-таки растаял.

— Перерыв на пятнадцать минут! — объявила Эф.

Как ты думаешь, может, и мне объявить небольшой перерыв?

Таня.

Аль-Джебр!

(Сева — Нулику)

Знаешь, Нулик, напрасно я злился на этого Весовщика. Он даже почище фокусника. Фокусников и у нас пруд пруди. А настоящего живого чародея днем с огнем не сыщешь.

В перерыве я подговаривал ребят смыться. Сколько можно возиться с неравенствами, равенствами и всякими Пи? Пришли составлять уравнение, так чего там!… Но Олег сказал, что сперва неплохо бы выяснить, что такое уравнение. Ах да! Я и позабыл.

Снова стукнулись медные подносы, вернулась наша Эф, и мы опять уселись на коврики.

Только я хотел спросить, где же Весовщик, а он уж тут как тут! Сидит под весами, словно никуда не исчезал.

Весовщик взмахнул палочкой, и над каждой чашкой весов появилось по числу 14. В глазке засверкал знак равенства.

«Здравствуйте! — подумал я. — Все сначала!»

Но я ошибался. Кроме чисел 14, на каждой чашке весов появилось по Пятерке: 14 + 5 = 14 + 5.

Чашки не дрогнули, глазок по-прежнему показывал равенство. Потом вместо этих чисел на весы стали две суммы: а + b = с + d.

И снова подле каждой из них засветились одинаковые числа, на этот раз Тройки: a + b + 3 = c + d + 3.

Чашки не шелохнулись.


Еще от автора Владимир Артурович Левшин
Три дня в Карликании

Рассказ в веселой и доступной форме детям об арифметике.


Магистр Рассеянных Наук

В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».


Диссертация рассеянного магистра

Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся.Для младшего школьного возраста.


Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники.


В лабиринте чисел

Заблудиться в лабиринте чисел очень просто. Но если вашим проводником согласится стать сама многоуважаемая Арифметика, путешествие удастся на славу. Каждая остановка, а их будет тридцать две (по числу букв алфавита) подарит вам незабываемые впечатления, а задачи, которые Арифметика иногда будет подкидывать своим спутникам, внесут ещё большее разнообразие в этот и без того прихотливый маршрут. Замечательная книга о приключениях мальчика Чита в Лабиринте Чисел и о его проводнице — Арифметике. В увлекательной форме знакомит детей со многими математическими и логическими понятиями.


Рекомендуем почитать
Теорема века. Мир с точки зрения математики

«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!


Библейские игры

Мог ли Авраам отказаться принести в жертву Исаака, как Бог приказал ему сделать, и при этом избежать Божьего гнева за отказ? Что бы случилось, если бы Ева не сорвала яблоко с древа познания добра и зла? Что было бы, откажись Адам попробовать это яблоко? Автор исследует мотивы поведения тех или иных библейских персонажей, анализирует рациональность их действий и обсуждает мораль их поведения, а также возможные варианты исходов тех или иных библейских сюжетов в зависимости от того, как их герои поступили бы в той или иной ситуации.


Логика чудес. Осмысление событий редких, очень редких и редких до невозможности

Мы живем в мире гораздо более турбулентном, чем нам хотелось бы думать, но наука, которую мы применяем для анализа экономических, финансовых и статистических процессов или явлений, по большей части игнорирует важную хаотическую составляющую природы мироздания. Нам нужно привыкнуть к мысли, что чрезвычайно маловероятные события — тоже часть естественного порядка вещей. Выдающийся венгерский математик и психолог Ласло Мерё объясняет, как сосуществуют два мира, «дикий» и «тихий» (которые он называет Диконией и Тихонией), и показывает, что в них действуют разные законы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Урожаи и посевы

Первый перевод с французского книги «Recoltes et Semailles» выдающегося математика современности Александра Гротендика. Автор пытается проанализировать природу математического открытия, отношения учителя и учеников, роль математики в жизни и обществе. Текст книги является философски глубоким и нетривиальным и носит характер воспоминаний и размышлений. Книга будет интересна широкому кругу читателей — математикам, физикам, философам и всем интересующимся историческими, методическими и нравственными вопросами, связанными с процессом математического открытия и возникновения новых теорий.


Слово памяти (Владислав Игоревич Котюков)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Фрегат капитана Единицы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.