C++. Сборник рецептов - [33]
>$<
, представляющая имя файла первого пререквизита, и переменная >$^
,представляющая последовательность пререквизитов, разделенных пробелами. Используя эти переменные, мы можем еще сильнее упростить make-файл из примера 1.16, как показано в примере 1.17.Пример 1.17. make-файл для сборки исполняемого файла hello с помощью GCC, измененный с помощью автоматических переменных
># Указываем целевой файл и директорию установки
>OUTPUTFILE=hellо
>INSTALLDIR=binaries
># Цель по умолчанию
>.PHONY all
>all: $(OUTPUTFILE)
># Собрать hello из hello.cpp
>$(OUTPUTFILE) hello.cpp
> g++ -o $@ $<
># Цели Install и clean как в примере 1 16
В командном сценарии >g++ -o $@ $<
переменная >$@
раскрывается как >hello
, а переменная >$<
раскрывается как >hello.cpp
. Следовательно, make-файл из примера 1.17 эквивалентен файлу из примера 1.16, но содержит меньше дублирующегося кода.
make-файл в примере 1.17 может быть еще проще. На самом деле командный сценарий, связанный с целью >hello
, избыточен, что демонстрируется выполнением make-файла из примера 1.18.
Пример 1.18. make-файл для сборки исполняемого файла hello с помощью GCC, измененный с помощью неявных правил
># Указываем целевой файл и директорию установки
>OUTPUTFILE=hello
>INSTALLDIR=binaries
># Цель по умолчанию
>.PHONY: all
>all: $(OUTPUTFILE)
># Говорим make пересобрать hello тогда, когда изменяется hello.cpp
>$(OUTPUTFILE): hello.cpp
># Цели Install и clean как в примере 1.16
Откуда make знает, как собирать исполняемый файл hello из исходного файла hello.cpp, без явного указания? Ответ состоит в том, что make содержит внутреннюю базу данных неявных правил, представляющих операции, часто выполняемые при сборке приложений, написанных на С и С++. Например, неявное правило для генерации исполняемого файла из файла .cpp выглядит так, как в примере 1.19.
Пример 1.19. Шаблон правила из внутренней базы данных make
>%: %.cpp
># исполняемые команды (встроенные):
> $(LINK.cpp) $(LOADLIBS) $(LDLIBS) -о $@
Правила, первые строки которых имеют вид >%xxx:%yyy
, известны как шаблонные правила (pattern rules), а символ >%
действует как подстановочный знак (wildcard). Когда устаревшему пререквизиту не соответствует ни одно из обычных правил, make ищет доступные шаблонные правила. Для каждого шаблонного правила make пытается найти строку, которая при подстановке подстановочного знака в целевую часть правила даст искомый устаревший пререквизит. Если make находит такую строку, make заменяет подстановочные знаки для цели и пререквизитов шаблонного правила и создает новое правило. Затем make пытается собрать устаревший пререквизит с помощью этого нового правила.
Например, при первом выполнении make-файла из примера 1.18 пререквизит >hello
цели по умолчанию >all
является устаревшим. Хотя >hello
фигурирует как цель правила >$(OUTPUTFILE): hello.cpp
, это правило не содержит командного сценария, и, таким образом, оно бесполезно для сборки файла hello. Следовательно, make выполняет поиск в своей внутренней базе данных и находит правило, показанное в примере 1.19. Подставляя в правило из примера 1.19 вместо подстановочного знака строку >hello
, make генерирует следующее правило с >hello
в качестве цели.
>hello: hello.cpp
> $(LINK.cpp) $(LOADLIBS) $(LDLIBS) -o $@
Пока все хорошо, но есть еще кое-что. Повторный взгляд на внутреннюю базу данных make показывает, что переменная >LINK.cpp
по умолчанию раскрывается как >$(LINK.cc)
. В свою очередь >LINK.cc
по умолчанию раскрывается как
>$(CXX) $(CXXFLAGS) $(CPPFLAGS) $(LDFLAGS) $(TARGET_ARCH)
Наконец, переменная >CXX
по умолчанию раскрывается как >g++
, а четыре другие переменные — >$(CXXFLAGS)
, >$(CPPFLAGS)
, >$(LDFLAGS)
и >$(TARGET_ARCH)
— раскрываются как пустые строки. После выполнения всех этих подстановок получается следующее правило, которое теперь выглядит более знакомо.
>hello: hello.cpp
> g++ $^ -o $@
Теперь, когда вы увидели, как шаблонное правило из примера 1.19 приводит к тому, что make собирает исполняемый файл hello из исходного файла hello.cpp, вы можете спросить, почему было необходимо использовать столько промежуточных шагов. Почему вместо сложного правила из примера 1.19 во внутреннюю базу данных make просто не добавить правило
>%: %.cpp
> g++ $^ -о $@
Ответ состоит в том, что промежуточные переменные, такие как >$(CXX)
, >$(CXXFLAGS)
, >$(CPPFLAGS)
и >$(LDFLAGS)
, служат как точки настройки (customization points). Например, указав значение >LDFLAGS
в командной строке, в make-файле или установив значение переменной среды, можно указать дополнительные флаги, передаваемые компоновщику. Переменные >CPPFLAGS
и >CXXFLAGS
играют схожую роль для опций препроцессора и компилятора C++ соответственно. А установив значение переменной >CXX
, можно указать компилятор, отличный от GCC. Например, чтобы собрать hello с помощью Intel для Linux и используя make-файл из примера 1.18, вы должны в командной строке ввести
Разработчику часто требуется много сторонних инструментов, чтобы создавать и поддерживать проект. Система Git — один из таких инструментов и используется для контроля промежуточных версий вашего приложения, позволяя вам исправлять ошибки, откатывать к старой версии, разрабатывать проект в команде и сливать его потом. В книге вы узнаете об основах работы с Git: установка, ключевые команды, gitHub и многое другое.В книге рассматриваются следующие темы:основы Git;ветвление в Git;Git на сервере;распределённый Git;GitHub;инструменты Git;настройка Git;Git и другие системы контроля версий.
Рассмотрено все необходимое для разработки, компиляции, отладки и запуска приложений Java. Изложены практические приемы использования как традиционных, так и новейших конструкций объектно-ориентированного языка Java, графической библиотеки классов Swing, расширенной библиотеки Java 2D, работа со звуком, печать, способы русификации программ. Приведено полное описание нововведений Java SE 7: двоичная запись чисел, строковые варианты разветвлений, "ромбовидный оператор", NIO2, новые средства многопоточности и др.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.