Борьба за скорость - [15]

Шрифт
Интервал

И если вам ответят, что это лабораторный сплав, тогда вы смело можете усомниться в его исключительности.

Бывали такие случаи. Сплав из лабораторной печи вел себя прекрасно. И прочность, и твердость, и другие свойства отвечали самым жестким требованиям. Однако на заводе получалось другое, и сплаву приходилось отказывать в «путевке в жизнь».

От лаборатории до производства — еще дистанция немалого размера. И то, что инженеры полностью решают задачу, то, что они научились давать металл, не уступающий лабораторным образцам, — это большое достижение металлургии, которое трудно переоценить.

Комбинируя различные добавки, металлурги получают нужные свойства сплавов. Нередко ничтожные количества некоторых элементов резко улучшают материал. Название «гомеопатическая» металлургия, металлургия малых добавок, к которому прибегают инженеры, верно буквально, без кавычек.

Они добиваются исключительной чистоты сплава, ведут жестокую борьбу с каждой нежелательной примесью, с каждым незваным гостем, попавшим при плавке в сплав.

И каждую плавку они заставляют сдавать трудный экзамен.

Мы как-то упомянули, что нельзя сделать части машины из золота или платины. Но разве только золото и платина дороги? Нет, конечно. Есть и еще дефицитные, дорогие элементы. Они-то как раз и нужны для создания высокопрочных сплавов.

В лаборатории, пожалуй, это не составит проблемы. Там можно проводить опыты хоть с радием. А когда радия потребуется не доли грамма, а килограммы и десятки килограммов! Волей-неволей от него придется отказаться.

Выходит, надо искать заменители дорогих, остродефицитных материалов. Молибден, скажем, заменить более доступным, дешевым марганцем.

А только просто ли это сделать? От изменения состава сплав может измениться так, что его и не узнаешь.

Большие и сложные исследования ведут металловеды, создавая новые сплавы. Это, пожалуй, звучит очень скромно и неопределенно. Но как же все-таки может быть велика эта «большая» работа?

Предположим, что мы захотели бы испробовать все возможные сочетания из двух, трех, четырех и так далее элементов, скажем, до десяти. А в каждом из таких сочетаний мы изменяли бы содержание составных его частей, допустим, 10 раз.

Сколько нужно было бы изготовить образцов? Оказывается, так много, что на испытания их не хватило бы человеческой жизни.

Итак, «большая» работа оказывается бесконечной, а значит, и неосуществимой.

И у нас нет никакой надежды не только довести ее до конца, но и хоть сколько-нибудь заметно продвинуться вперед. Исключается всякая возможность плана, системы. Их заменяет случай.

Долгие годы нужны для того, чтобы изучить, перепробовать хотя бы сплавы всего из двух металлов — двойные. Века нужны, чтобы создать и испытать тройные и четверные сплавы. Чтобы испытать все сплавы из 10 элементов, понадобилось бы столько образцов, что для них не хватило бы массы металлов размерами с земной шар.

Но нельзя ли ускорить эту работу?

Советская наука ответила: можно!

Профессор С. А. Векшинский разработал совершенно новый способ исследования структуры и свойств сплавов.

Мы можем с вами оценить значение способа Векшинского, зная о тех действительно непреодолимых препятствиях, которые стояли перед металловедами.

Нет возможности описать во всех подробностях эту работу. Но суть ее понять нетрудно.

Твердым и жидким металлом наука занималась давно. А вот тот же металл, но в виде газа, точнее пара, выпал из поля зрения металловедов. В этом же оказался ключ решения задачи, которой занялся Векшинский.

Давно известно, что при нагревании металл испаряется. Все быстрее и быстрее двигаются тогда атомы металла. И часть из них уже может преодолеть силы притяжения соседей, оторваться и улететь.

В воздухе, конечно, такой вырвавшийся с поверхности металла атом далеко не улетит. Его «затолкают» встречные молекулы воздуха, он быстро потеряет свою скорость. А если бы могли увидеть его путь при этом, то заметили бы причудливую ломаную линию. Едва он успевает поворачиваться под ударами встречных молекул.

Другое дело — в пустоте. «Пустота», конечно, дело относительное. Но все же наши машины глубокого вакуума, пустоты, создают разрежение до одной тысячемиллиардной доли атмосферы. По сравнению с плотным воздухом у поверхности Земли это действительно пустота.

И вот там-то атомы испаренного металла полетят без помех прямым пучком.

Пусть такой пучок встретит на пути стеклянную пластинку. Тогда, подобно муке, которая, высыпаясь из пакета на стол, ляжет горкой, осядут горкой и атомы на пластинке. Слой атомов металла на пластинке будет неодинаковой толщины: чем дальше от вершины «горки», тем тоньше.

А теперь пусть не один, а два или три пучка от разных металлов направляются к пластинке. Атомы перемешаются, и на ней осядут слои — «горки» из разных атомов.

В разных местах пластинки будут и разные по составу слои. В одном месте будет больше, скажем, никеля, меньше хрома, где-то в другом — наоборот.

На пластинке исследователь получит всю гамму сочетаний составных частей, всевозможные их комбинации. Этого можно достигнуть, и это сделал Векшинский.

Но ведь тогда на стеклянной пластинке откроется перед нами сплав во всем его многообразии. На маленькой пластинке мы увидим большой мир — тысячи разных сплавов, стоит только перейти из одного места пластинки в другое. Передвигаясь по пластинке, мы сразу встретим всю гамму сплавов, которые нужно было бы создавать годами упорного труда.


Еще от автора Борис Валерианович Ляпунов
Искатель, 1963 № 06

На 1-й стр. обложки: рисунок А. Гусева к рассказу Ж. Рони-Старшего «Сокровище снегов».На 3-й стр. обложки: «Космический ландшафт». Рис. Н. Соколова.На 4-й стр. обложки: «Романтика будней». Фото В. Барановского с выставки «Семилетка в действии».


Пленники Земли

Пленники Земли: (Тунгусские тайны. Том П). Сост. и комм. М. Фоменко. — Б.м.: Salamandra P.V.V., 2014. - 95 с. — (Polaris: Путешествия, приключения, фантастика. Вып. LXIII).Двухтомник «Тунгусские тайны» объединяет ранние научно-фантастические произведения, посвященные загадке Тунгусского метеорита.Во второй том издания вошла фантастическая повесть М. Семенова «Пленники Земли» (1937), где автор, впервые в советской фантастике, описал Тунгусский метеорит как корабль инопланетных пришельцев. Издание также включает классический рассказ А.


Полет на Луну

От издательства:За основу настоящего сборника взят материал, опубликованный в журнале «Знание — сила» № 10 за 1954 год.Авторы статей кандидаты техн. наук К. Гильзин и Ю. Хлебцевич, инженеры В. Левин, Л. Орлов, Ю. Степанов, И. Фридман, писатели Г. Гуревич, Ю. Долгушин, Б. Ляпунов и М. Поповский.Большую работу по обобщению и редактированию всего материала провели К. Гильзин и Г. Гуревич.Послесловие Н. Варварова.Содержание:ВведениеЧАСТЬ ПЕРВАЯ. ТРУДНОСТИ ПОЗАДИК. Гильзин, канд. техн. наук. Рождение астронавтикиГ. Гуревич. Межпланетный вокзалГ.


Александр Беляев

Критико-биографический очерк, посвященный Александру Романовичу Беляеву.


Тайна безымянного острова

В антологию включены фантастические произведения рассказывающие о географических открытиях, совершенных в высоких широтах обоих полушарий нашей планеты.Открывается книга серьезной утопической повестью Леонида Денисова. Несмотря на прорвавшийся в пятой главе религиозный экстаз, описание природы Крайнего севера и Ледовитого океана великолепны и уникальны по силе эмоционального воздействия на читателя.Далее следует небольшая повесть, реконструирующая последние дни полета аэростата шведского исследователя Арктики Андре Соломона Августа и дальнейшую судьбу его и его товарищей.В книгу также включены несколько рассказов, собранных по страницам периодических изданий и мало известных читателю.Содержание:* Леонид Денисов.На Северном полюсе(повесть)* Н.


По следам Жюля Верна

Почти столетие отделяет нас от тех времен, когда Жюль Верн, великий фантаст, поэт науки и техники, написал первую книгу из серии романов-путешествий — «Пять недель на воздушном шаре».Многое изменилось с тех пор. И все же…Идя по следам героев Жюля Верна, путешественники не всегда повторяли сделанное ими. Но перед ними стояла та же цель: искать и находить! Проникнуть туда, где никто никогда не бывал! Построить машины, которых никто никогда не строил!И вот о том, как это могло бы произойти, вам расскажет наша книга научно-фантастических очерков о необыкновенных путешествиях, совершенных во второй половине двадцатого века.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.