Борьба за скорость - [17]

Шрифт
Интервал

Но стоит только снять нагрузку, исчезает и рисунок. Ею можно сохранить, «заморозив» напряжения. Это не литературное, а чисто техническое выражение. Их «замораживают», но не холодом, а… теплом. Модель тогда делают из каркаса и заполнителя.

Каркас — «скелет» — тугоплавкий, при нагреве не плавится, но меняет форму под нагрузкой.

Внутри же «скелета» материал плавится и заполняет эту своеобразную форму. Застыв, он сохраняет те изменения, которые произошли с каркасом. Теперь можно охладить модель, и жидкий материал затвердеет. Остается только, остановив вращение модели, призвать на помощь оптические приборы, и застывший рисунок предстанет перед ними, как моментальная фотография.

А вот другой способ.

Напряжения вызывают перемещения частиц материала: деталь растягивается, изгибается, скручивается. Эти перемещения, или, как говорят, деформации, не произвольны, а связаны между собой. Зная деформации, можно определить и напряжения.

Как же определить деформации?

Тут приходится искать обходные пути. Ведь перемещения настолько малы, что глазом их заметить и измерить, да еще в быстродвижущейся детали, невозможно.

Но надо все же эти ничтожные изменения уловить, а затем их можно будет усилить, сделать заметными, и по ним уже судить о напряжениях.

Деталь покрывают особым лаком. Когда деталь работает, появляются деформации и лак растрескивается. Опасные места, где сильнее всего деформируется деталь, где напряжения максимальны и выдают себя трещинками.

На детали в разных местах приклеивают особым клеем кусочки тонкой бумаги. К бумажкам, в свою очередь, приклеены тончайшие проволочки. Через них идет ток.

Когда деталь деформируется, с ней вместе, повторяя все ее движения, вытягивается или сжимается и проволочка. Ее длина меняется, а поэтому меняется и сопротивление идущему по ней току. Эти еле заметные изменения усиливаются усилителем. По ним можно судить о напряжениях.

Так деталь «докладывает» исследователю о своей работе.

Можно заставить отчитываться и целую машину.

Так делают, например, в авиационной технике — при испытании самолетов.

Модель самолета помещают в трубу, где искусственно создается воздушный поток. При этом, как и при всяком испытании модели, пользуются подобием явлений: по поведению модели можно, применяя расчеты, судить и о работе большой машины.

На модели самолета, помещенной в воздушный поток, изучают, как будет работать настоящий самолет, какие будут действовать на него в полете силы. Зная эти силы, можно рассчитать самолет на прочность. Затем в лаборатории прочности испытывают под нагрузкой и отдельные детали и весь самолет. Он, этот опытный самолет, еще не поднимаясь в воздух, обречен на гибель. Но гибель его не напрасна: теперь конструкторы знают все опасные места, а зная врага, легче с ним бороться.

Но вернемся к материалам для быстроходных машин. Какие еще неожиданности таят они для конструктора?

Вот несколько любопытных примеров. Оказывается, сплавы повышенной прочности обладают повышенной чувствительностью к резким изменениям формы детали. Какая-нибудь выточка, канавка или переход от одного диаметра к другому — все это вызывает увеличение напряжений в этих местах, а значит, и опасность разрушения.

Но ведь сложная форма детали с такими «опасными» местами — не прихоть конструктора, не произвол.

Как же быть? Образец из нового, высокой прочности сплава сдаст экзамен на «отлично». А за сделанную из того же самого сплава деталь сложной формы ручаться нельзя.

«Где тонко, там и рвется», — говорит пословица. И бывали случаи, когда в таком «тонком», опасном месте и рвались валы турбин, разлетались на куски быстроходные электромоторы и центрифуги.

Теперь, пожалуй, не покажется преувеличением утверждение ученых, что ответ на вопрос, почему отличаются по прочности образец металла и деталь из него, — это одна из важнейших задач современной техники, техники больших скоростей, давлений, температур, требующей высокопрочных материалов.

Намечаются и используются пути борьбы с вредными «скоплениями» напряжений.

Конструкторы так проектируют машину, чтобы не было резких переходов — от большей толщины к меньшей, от одной формы к другой. Плавные переходы вместо резких, закругленные формы вместо острых. Избегать скопления, концентрации напряжений — таков девиз конструктора.

Идя таким путем, лишь сравнительно немного изменив конструкцию одного электромотора, конструкторы получили возможность увеличить нагрузку в полтора раза без вреда для машины.

Технологи находят способы увеличивать прочность поверхностных слоев металла. Упрочняя поверхность детали, они делают металл более выносливым, как бы «бронируют» его. Не усложняя состава сплава, говорят они, мы делаем его более стойким.

И техника широко применяет сейчас различные способы повышения прочности, которые помогают бороться с вредным влиянием концентрации напряжений.

Рядом с опасным местом, за которое боятся больше всего, делают надрез. Это покажется с первого взгляда странным: вместо того чтобы повышать прочность, ее нарочно уменьшают, да еще как! Рядом с какой-нибудь большой выточкой делают выемку, как будто намеренно портя деталь.


Еще от автора Борис Валерианович Ляпунов
Искатель, 1963 № 06

На 1-й стр. обложки: рисунок А. Гусева к рассказу Ж. Рони-Старшего «Сокровище снегов».На 3-й стр. обложки: «Космический ландшафт». Рис. Н. Соколова.На 4-й стр. обложки: «Романтика будней». Фото В. Барановского с выставки «Семилетка в действии».


Пленники Земли

Пленники Земли: (Тунгусские тайны. Том П). Сост. и комм. М. Фоменко. — Б.м.: Salamandra P.V.V., 2014. - 95 с. — (Polaris: Путешествия, приключения, фантастика. Вып. LXIII).Двухтомник «Тунгусские тайны» объединяет ранние научно-фантастические произведения, посвященные загадке Тунгусского метеорита.Во второй том издания вошла фантастическая повесть М. Семенова «Пленники Земли» (1937), где автор, впервые в советской фантастике, описал Тунгусский метеорит как корабль инопланетных пришельцев. Издание также включает классический рассказ А.


Полет на Луну

От издательства:За основу настоящего сборника взят материал, опубликованный в журнале «Знание — сила» № 10 за 1954 год.Авторы статей кандидаты техн. наук К. Гильзин и Ю. Хлебцевич, инженеры В. Левин, Л. Орлов, Ю. Степанов, И. Фридман, писатели Г. Гуревич, Ю. Долгушин, Б. Ляпунов и М. Поповский.Большую работу по обобщению и редактированию всего материала провели К. Гильзин и Г. Гуревич.Послесловие Н. Варварова.Содержание:ВведениеЧАСТЬ ПЕРВАЯ. ТРУДНОСТИ ПОЗАДИК. Гильзин, канд. техн. наук. Рождение астронавтикиГ. Гуревич. Межпланетный вокзалГ.


Александр Беляев

Критико-биографический очерк, посвященный Александру Романовичу Беляеву.


Тайна безымянного острова

В антологию включены фантастические произведения рассказывающие о географических открытиях, совершенных в высоких широтах обоих полушарий нашей планеты.Открывается книга серьезной утопической повестью Леонида Денисова. Несмотря на прорвавшийся в пятой главе религиозный экстаз, описание природы Крайнего севера и Ледовитого океана великолепны и уникальны по силе эмоционального воздействия на читателя.Далее следует небольшая повесть, реконструирующая последние дни полета аэростата шведского исследователя Арктики Андре Соломона Августа и дальнейшую судьбу его и его товарищей.В книгу также включены несколько рассказов, собранных по страницам периодических изданий и мало известных читателю.Содержание:* Леонид Денисов.На Северном полюсе(повесть)* Н.


По следам Жюля Верна

Почти столетие отделяет нас от тех времен, когда Жюль Верн, великий фантаст, поэт науки и техники, написал первую книгу из серии романов-путешествий — «Пять недель на воздушном шаре».Многое изменилось с тех пор. И все же…Идя по следам героев Жюля Верна, путешественники не всегда повторяли сделанное ими. Но перед ними стояла та же цель: искать и находить! Проникнуть туда, где никто никогда не бывал! Построить машины, которых никто никогда не строил!И вот о том, как это могло бы произойти, вам расскажет наша книга научно-фантастических очерков о необыкновенных путешествиях, совершенных во второй половине двадцатого века.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.