Большое, малое и человеческий разум - [12]
Рис. 1.18.
а — треугольник в евклидовом пространстве; б — треугольник в пространстве Лобачевского.
Очень важную роль в геометрии играют так называемые действительные (вещественные) числа, абсолютно необходимые для построений евклидовой геометрии. Такие числа ввел древнегреческий математик Евдокс в 4 веке до н.э., и они до сих пор сохраняют свое значение для создания физической картины мира. Позднее мы будем говорить и о комплексных числах, но последние также основаны на представлении о вещественных числах.
Давайте рассмотрим еще одну гравюру Эшера (рис. 1.19), которая демонстрирует особенности геометрии Лобачевского даже нагляднее, чем рис. 1.17 (поскольку на ней использованы «прямые линии», которые всегда выглядят более очевидными). На рисунке показаны дуги окружностей, пересекающие границу под прямым углом. Обитатель мира с геометрией Лобачевского воспринимал бы прямую линию как одну из этих дуг, что хорошо видно на рис. 1.19, где «по-настоящему прямыми» являются лишь линии, проходящие через центр окружности, а все остальные «прямые» в действительности представляют собой изогнутые дуги. Некоторые из этих «прямых» показаны на рис. 1.20, где я дополнительно выделил точку, не лежащую на истинной прямой (т. е. не на диаметре). Обитатель мира Лобачевского может провести через эту точку две (и даже больше) различные линии, которые не будут пересекать диаметр, т. е. в этой геометрии пятый постулат Евклида безусловно не имеет силы. Более того, измерив сумму углов треугольника на рисунке, вы можете вычислить его площадь. Надеюсь, что даже эти обрывочные сведения дают возможность почувствовать необычность и очарование мира с гиперболической геометрией.
Рис. 1.19. Гравюра М. К. Эшера «Предельная окружность 1».
Рис. 1.20. Некоторые особенности гиперболической геометрии (пространства Лобачевского), поясняющие построения гравюры «Предельная окружность 1».
Я уже говорил, что мне очень нравится гиперболическая геометрия, созданная Лобачевским. Одной из причин моего пристрастия является и то, что группой симметрий этого пространства выступает уже знакомая нам группа Лоренца, соответствующая симметрии специальной теории относительности и световых конусов, играющих в этой теории столь важную роль. На рис. 1 .21 световой конус показан более подробно. Я нарочно убрал одну из пространственных координат, чтобы продемонстрировать вам наглядную трехмерную картину. Показанный на рисунке световой конус описывается простым уравнением
t>2 - x>2 - y>2 = 0.
Рис. 1.21. Пространство Лобачевского, «вложенное» (в виде гиперболоидов) в пространство-время Минковского.
Стереографическая проекция переводит его в так называемый диск Пуанкаре, ограниченный окружностью на плоскости t = 0.
В такой геометрии (ее называют геометрией Минковского) уравнению t>2 - x>2 - y>2 = 0 соответствуют две чашеобразные поверхности, расположенные на «единичном расстоянии» от начала координат («расстоянию» в геометрии Минковского соответствует реальное время, т. е. время, измеряемое в физическом эксперименте при помощи движущихся часов). В пространстве Минковского эти поверхности служат «сферами», и можно показать, что внутренняя геометрия таких сфер является гиперболической (пространство Лобачевского). В евклидовой геометрии вы можете вращать обычную сферу и найти группу симметрии, соответствующую таким вращениям. В случае поверхностей, изображенных на рис. 1.21, группа симметрий представляет собой группу вращений Лоренца, которая описывает преобразование пространства и времени при вращении, т. е. при вращении единого пространства-времени вокруг некоторой фиксированной точки. В таком представлении группа симметрий пространства Лобачевского точно совпадает с группой Лоренца.
На рис. 1.21 для пространства Минковского показана также стереографическая проекция, подобная рассмотренной выше (рис. 1.10, в). Вместо южного полюса на рис. 1.21 используется точка (-1, 0, 0), а точки верхней «чаши» проецируются на плоскость t = 0, которая выступает аналогом экваториальной плоскости на рис. 1.10, в. Все точки после проецирования лежат внутри окружности в плоскости t = 0, которую называют иногда диском Пуанкаре. В результате операции в целом (которая, кстати, в точности совпадает с художественным приемом, использовавшимся М.Эшером в его гравюрах «Предельная окружность») гиперболическая поверхность (пространство Лобачевского) преобразуется в диск Пуанкаре. Более того, такое преобразование соответствует главной особенности проекции рис. 1.10, в — оно сохраняет все углы и окружности, придавая операции геометрическое изящество. Я просто восхищаюсь всеми этими совпадениями, с которыми математики постоянно встречаются в своих исследованиях!
Надеюсь, что мой восторг не показался вам чрезмерным. Существует интересная и несколько загадочная психологическая закономерность: если результаты исследования какой-то заинтересовавшей вас проблемы (например, геометрической) выражаются красивой математической формулой, то это поддерживает интерес исследователя и стимулирует дальнейшую работу (совершенно аналогично результаты, не обладающие математическим изяществом, обычно разочаровывают и обескураживают исследователя). Гиперболической геометрии присуща особая математическая красота, и было бы очень приятно (мне лично, по крайней мере), если бы Вселенная была построена столь математически красиво. Разумеется, у меня есть очень много других причин для веры в такое устройство Вселенной. Многим не нравится идея о гиперболической, открытой Вселенной, и они предпочитают модели замкнутых вселенных (типа показанных на рис. 1.16,
Стивен Хокинг, величайший ученый современности, изменил наш мир. Его уход – огромная потеря для человечества. В своей финальной книге, над которой Стивен Хокинг работал практически до самого конца, великий физик делится с нами своим отношением к жизни, цивилизации, времени, Богу, к глобальным вещам, волнующим каждого из нас.
Книга представляет собой сборник эссе выдающегося физика современности Стивена Хокинга, написанных им в период с 1976 по 1992 год. Это и автобиографические очерки, и размышления автора о философии науки, о происхождении Вселенной и ее дальнейшей судьбе.
Эта книга объединила семь лекций всемирно знаменитого ученого, посвященных происхождению Вселенной и представлениям о ней - от Большого Взрыва до черных дыр и теории струн. А главное, тому, как создать на основе частных физических теорий великую объединенную теорию всего.
По Вселенной на астероиде – не может быть! Может! – не сомневаются знаменитый астрофизик Стивен Хокинг (интервью с ним читайте здесь), его дочь Люси и бывший аспирант, а ныне популяризатор науки Кристоф Гальфар, которые в сентябре 2007 года представили свою первую книгу для детей о приключениях Джорджа и его друзей во Вселенной.В этой живой и весёлой книге они рассказали о фантастически интересных предметах – черных дырах, квазарах, астероидах, галактиках и параллельных вселенных – детям. Авторы особо подчеркивают, что хотели «представить современный взгляд на космологию от Большого взрыва до настоящего времени без какой бы то ни было магии».
Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.
И вот – долгожданная вторая часть о приключениях Джорджа в космосе – «Джордж и сокровища Вселенной». Все те, кто прочитал научно-приключенческую повесть Стивена и Люси Хокинг «Джордж и тайны Вселенной», с нетерпением ждали продолжения: что-то станется с бесстрашными и любознательными героями дальше? Какие загадки предстоит им решить? Что нового узнать? Куда подевался тщеславный злодей доктор Линн?Во второй книге трилогии, к неразлучным друзьям Джорджу и Анни присоединяется еще один мальчик – компьютерный гений Эммет.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.