Большая Советская Энциклопедия (ФУ) - [33]

Шрифт
Интервал

служит различению разных слов и морфем или проведению границ между ними.

  Ф. изучаются и рассматриваются не только при описании единиц языка, но и самого языка как системы. Основная Ф. языка: коммуникативная, или Ф. общения, познавательная, отражательная, перформативная, фатическая (установление контакта без установки на передачу информации), номинативная — наречение или называние предметов и явлений действительности, экспрессивная, или Ф. выражения, аппелятивная, или Ф. обращения. В числе Ф. языка указывают также на уровневые Ф. — фонологические, морфологические, грамматические и др. С функциональной точки зрения система языка есть многомерное образование, дифференцируемое как по формам проявления (устный и письменный язык), так и по социальной предназначенности (литературный язык, социальные диалекты, арго и пр.), по эстетической направленности (поэтический язык), по конкретным задачам общения (специальные терминологические системы).

  Е. С. Кубрякова.

Функция (математ.)

Фу'нкция, одно из основных понятий математики, выражающее зависимость одних переменных величин от других. Если величины x и у связаны так, что каждому значению x соответствует определённое значение у , то у называют (однозначной) функцией аргумента x . Иногда x называют независимой, а у — зависимой переменной. Записывают указанное соотношение между x и у в общем виде так: у = f (x ) или у = F (x ) и т. п. Если связь между x и у такова, что одному и тому же значению x соответствует вообще несколько (быть может даже бесконечное множество) значений у , то у называют многозначной Ф. аргумента x . Задать Ф. у = f (x ) значит указать:

  1) множество А значений, которые может принимать x (область задания Ф.),

  2) множество В значений, которые может принимать у (область значения Ф.), и

  3) правило, по которому значениям x из А соотносятся значения у из В . В простейших случаях областью задания Ф. служит вся числовая прямая или её отрезок а £ x £ b (или интервал а < x < b ).

  Правило отнесения значениям x соответствующих им значений у чаще всего задаётся формулой, устанавливающей, какие вычислительные операции надо произвести над x , чтобы найти у . Таковы, например, формулы

,
 и т. п. К вычислительным (или аналитическим) операциям, кроме четырёх действий арифметики, принято относить также операцию перехода к пределу (т. е. нахождение по заданной последовательности чисел a>1 , a>2 , a>3 ,... её предела lima>n , если он существует), хотя никаких общих способов производства этой операции нет. В 1905 А. Лебег предложил общее определение аналитически изобразимой Ф. как Ф., значения которой получаются из значений x и постоянных величин при помощи арифметических действий и предельных переходов. Все т. н. элементарные Ф. sinx , cosx , a>x ,
, logx , arctgx и т. п. аналитически изобразимы. Например, cosx представляется формулой:

.

  В 1885 К. Вейерштрасс установил аналитическую изобразимость любой непрерывной функции . Именно, он показал, что всякая Ф., непрерывная на каком-нибудь отрезке, является пределом последовательности многочленов вида

c>0 + c>1 x + c>2 x>2 +...+ c>n x>n .

  Кроме описанного здесь аналитического способа задания Ф. при помощи формулы, применяются и др. способы. Так, в тригонометрии Ф. cosx определяется как проекция единичного вектора на ось, образующую с ним угол в x радианов, а Ф.

 в алгебре как число, квадрат которого равен x . Возможность задания этих Ф. при помощи аналитических формул устанавливается лишь при более углублённом их изучении. Упомянем ещё о т. н. функции Дирихле y(x ), равной 1, если x — число рациональное, и 0, если x — число иррациональное. Впервые эта Ф. была введена этим «бесформульным» способом, но впоследствии для неё была найдена и аналитическая формула:

.

  Существуют, однако, и такие Ф., которые не представимы в описанном выше смысле никакой аналитической формулой. Такими Ф., во всяком случае, являются т. н. неизмеримые по Лебегу Ф.

  К Ф., заданным одной аналитической формулой, примыкают Ф., которые на разных частях своей области задания определены различными формулами. Такова, например, Ф. f (x ), заданная так: f (x ) = x , если x £ 1, и f (x ) = x>2 , если x > 1. Приведённое выше «бесформульное» задание функции Дирихле y(x ) также принадлежит к этому типу.

  Ф. y = f (x ) иногда задаётся своим графиком, т. е. множеством тех точек (x , у ) плоскости, у которых x принадлежит области задания Ф., а у = f (x ). В прикладных вопросах часто довольствуются таким заданием Ф., когда её график просто начерчен на плоскости (рис. ), а значения Ф. снимаются с чертежа. Так, например, верхние слои атмосферы можно изучать при помощи шаров-зондов, несущих самопишущие приборы, непосредственно доставляющие кривые изменения температуры, давления и т. п.

  Чтобы задание Ф. графиком было вполне корректным с чисто математической точки зрения, недостаточно, однако, просто начертить её график, ибо задание геометрического объекта чертежом всегда недостаточно определенно. Поэтому для графического задания Ф. должна быть указана точная геометрическая конструкция её графика. Чаще всего эта конструкция задаётся при помощи уравнения, что возвращает нас к аналитическому заданию Ф., однако возможны и чисто геометрические методы построения графика (например, прямая линия вполне определяется заданием координат двух её точек).


Еще от автора БСЭ
Большая Советская Энциклопедия (--)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (ГЛ)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (ОК)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (А)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (БП)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (НУ)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Старый новый Голливуд: Энциклопедия кино. Tом I

Более трех тысяч голливудских фильмов вошли в этот уникальный энциклопедический справочник – от «Большого ограбления поезда» (1903) до хитов 2008 года. Вы узнаете все, что нужно знать о них:• информацию о студиях-производителях, продюсерах, режиссерах, сценаристах, актерах с указанием даты выпуска, хронометража, жанра, полученных наград;• комментарии автора с его оценкой по 4-балльной шкале и рекомендациями для зрителей;• имена лауреатов, номинантов и рекордсменов премии «Оскар» (1929–2009), других популярных наград – Британской киноакадемии (BAFTA), Голливудской ассоциации зарубежной прессы «Золотой глобус», престижных Гильдий актеров, режиссеров, продюсеров, сценаристов Америки;• редкие фотографии и постеры.А открытием для вас станет творческая судьба 138 русских эмигрантов разных поколений и 36 детей эмигрантов, которые работали и работают в Голливуде.


100 великих театров мира

Театр — одно из древнейших искусств. Его зачатки можно наблюдать уже в детской игре, в обычаях и обрядах — в свадебном, например. Но именно театр, как никакое другое искусство, вбирает в себя множество элементов. Театр разнообразен и разнолик. Человеческая память хранит представление о величии театров самых разных эпох. Древнегреческие и древнеримские театры до сих пор пленяют воображение своей масштабной и грандиозной архитектурой, своим удивительным образом организованным пространством. Но театр может жить не только в великолепных архитектурных зданиях, он может обитать и на улице, совершенно не теряя при этом своей магической притягательности.


Большая Советская Энциклопедия (ОМ)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (ОХ)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (ОИ)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большая Советская Энциклопедия (ВЕ)

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.