Бог и Мультивселенная. Расширенное понятие космоса - [125]

Шрифт
Интервал

Аналогично распространенность дейтерия имеет мало отношения к наличию жизни. Количество, необходимое для жизни, невелико, и допустимый диапазон составляет два порядка.

Королевский астроном Великобритании Мартин Рис и другие утверждают, что неоднородность материи во Вселенной, представленная величиной Q, должна была быть точно настроена в пределах порядка, чтобы стало возможно формирование галактик. Порядок — это едва ли тот случай точной настройки, который имеют в виду теисты, они чаще упоминают одну часть на 50–100 порядков. Ктомуже, если менять массу нуклонов вместе с Q, можно опять же расширить диапазон параметров для жизни.

В главе 14 мы обсудили модель LCDM, которая точно соответствует данным об анизотропиях реликтового излучения и согласуется с наблюдениями структуры галактик. В этой модели только шесть настраиваемых параметров, ни один из которых не входит в список, вокруг которого Росс и другие приверженцы божественной точной настройки устроили столько шума. Плотность материи не является параметром, а предполагается равной критическому значению. Скорость расширения (постоянная Хаббла) не является настраиваемым параметром, а вычисляется из модели. Единственный параметр — это отношение плотности темной энергии к критической плотности. Параметр Риса Q не входит в число этих шести, но он неявно присутствует в расчете структуры галактик.

Короче говоря, сторонникам божественной точной настройки стоит вернуться к чертежной доске, просчитать модель LCDM при разных наборах параметров и показать, что жизнь в любой форме была бы невозможна, если бы эти шесть параметров не были именно такими, каковы они в нашей Вселенной.

Моделирование вселенных. Совокупные свойства Вселенной в том виде, какой мы знаем ее сейчас, определяются лишь тремя физическими параметрами: силой электромагнитного взаимодействия α и массами протона и электрона m>pи m. Исходя из них, мы можем оценивать такие величины, как максимальное время жизни звезд, минимальные и максимальные массы планет, минимальная длина планетарного дня и максимальная продолжительность года для обитаемой планеты. Сгенерировав 10 тыс. вселенных, в которых параметры варьировались случайно по логарифмической шкале в диапазоне 10 порядков, я обнаружил, что в 61% вселенных время жизни звезд превышало 10 млрд. лет, что допускает развитие какой-нибудь разновидности жизни.

Коллинз ранее возражал против сделанного мной предварительного вывода двадцатилетней давности о том, что длительное время жизни звезд не является точно настроенным>{391}. Он полагает, что не все из этих вселенных подходят для жизни и что я не учел свойства, препятствующие жизни. Он ссылается на Джона Барроу и Франка Типлера, которые в своем классическом (хотя и содержащем множество опечаток и математических ошибок) труде «Антропный космологический принцип» (The Anthropic Cosmological Principle) привели оценку, что должно выполняться соотношение α ≤ 11,8α>s, чтобы углерод был стабильным>{392}.

Поскольку в своем исследовании я варьировал все параметры в пределах 10 порядков, я не ожидал, что такой строгий критерий будет выполняться часто. Тем не менее я проверил это и обнаружил, что условие Барроу — Типлера удовлетворялось в 59% случаев. Я также изучил, что происходит, когда параметры варьируются в пределах всего двух порядков. Тогда в 91% случаев α ≤ 11,8α>s. И снова я должен подчеркнуть, что сторонники точной настройки заявляют о куда большей чувствительности, чем изменение в пределах порядка.

Если наложить на все три параметра достаточно жесткие ограничения, чтобы получить жизнь, то 13% вселенных способны поддерживать жизнь какого-либо рода, не слишком отличную от нашей, при изменении параметров в пределах 10 порядков. Если же они варьируются в пределах двух порядков, что более реалистично, поскольку параметры не независимы, а взаимосвязаны, то в 92% вселенных время жизни звезд превышает 10 млрд. лет, а 37% способны поддерживать жизнь какого-либо рода, не слишком отличную от нашей. Жизнь, сильно отличающаяся от нашей, остается возможной в значительной части остальных вселенных, в первую очередь судя по большому времени жизни звезд.

Я не говорю, что объяснил значения всех параметров физики и космологии. В этом нет необходимости, если я хочу опровергнуть заявления оппонентов, что многие параметры настроены с невероятной точностью, такой как 1 часть на 120 порядков. Неточность в 1%, 10% или даже на порядок, как в случае параметра неоднородности Q, не считается точной настройкой.


Краткий обзор доводов против точной настройки

Далее приведен список логических и научных ошибок приверженцев точной настройки (не все они делают все эти ошибки), которые я обнаружил при изучении этого вопроса.

♦ Они делают заявления о точной настройке, исходя из параметров нашей Вселенной и нашей формы жизни, игнорируя возможность существования других форм жизни.

♦ Они заявляют о точной настройке физических постоянных, значения которых произвольны, таких как с, ħ и G.

♦ Они называют точно настроенными величины, значения которых строго определены космологической физикой или имеют широкий допустимый диапазон, такие как соотношение количеств электронов и протонов, скорость расширения Вселенной и массовая плотность Вселенной. Они даже не считаются переменными в современной стандартной космологической модели.


Рекомендуем почитать
99 секретов астрономии

В этой книге спрятано 99 секретов астрономии. Откройте ее и узнайте о том, как устроена Вселенная, из чего состоит космическая пыль и откуда берутся черные дыры. Забавные и простые тексты расскажут о самых интересных астрономических явлениях и законах. Да здравствует наука БЕЗ занудства и непонятных терминов!


Астрономия за 1 час

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!


Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Вечность. В поисках окончательной теории времени

Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни. Книга «Вечность.


Нереальная реальность. Путешествие по квантовой петле

«Карло Ровелли – это человек, который сделал физику сексуальной, ученый, которого мы называем следующим Стивеном Хокингом». – The Times Magazine Что есть время и пространство? Откуда берется материя? Что такое реальность? «Главный парадокс науки состоит в том, что, открывая нам твердые и надежные знания о природе, она в то же время стремительно меняет ею же созданные представления о реальности. Эта парадоксальность как нельзя лучше отражена в книге Карло Ровелли, которая посвящена самой острой проблеме современной фундаментальной физики – поискам квантовой теории гравитации. Упоминание этого названия многие слышали в сериале “Теория Большого взрыва”, но узнать, в чем смысл петлевой гравитации, было почти негде.


Жизнь на грани

Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира.


Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей. Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени. Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались.