Бесчисленное поддается подсчету. Кантор. Бесконечность в математике. - [4]

Шрифт
Интервал

Музыка и искусство всегда были важны для Кантора. Он считал, что математика и искусство не так уж далеки друг друга и что математик должен обладать и творческой жилкой (это мнение разделяли многие его современники, а также автор этих строк). Так, в 1833 году он написал статью, в которой упоминал об «удивительных открытиях» (позже он рассказал о них в письме Дедекинду); среди прочего в ней были такие слова: «Вся общность математики заключается в ее свободе» (курсив Кантора). В ней же он писал: 

«В силу этого исключительного положения, отличающего ее от всех других наук и объясняющего сравнительную легкость и отсутствие принуждения в занятии ею, она заслуживает совершенно особенным образом имени свободной математики — название, которое, будь мне предоставлен выбор, я дал бы охотнее, чем ставшее обычным наименование «чистая» математика». 

Таким образом, математик может отпустить свое воображение в «свободный полет» и оперировать понятиями как ему вздумается — при условии, что они не ведут к логическим противоречиям. И если противоречий нет, то, как утверждал Кантор, можно быть уверенными, что эти объекты действительно существуют. Выходит, математик, способный выводить новые понятия, одновременно и ученый и художник. Эти идеи не просто отражали мысль Кантора, они, особенно в этой знаковой статье, играли стратегическую роль, о чем мы поговорим в следующих главах.

Но вернемся к первым годам жизни Кантора. У его отца было слабое здоровье, и в 1856 году врачи посоветовали ему уехать от суровых петербургских зим в зону более благоприятного климата. Тогда Кантор-отец завершил все свои дела в России, и семья перебралась в Германию. Сначала они поселились в Висбадене, где Георг посещал гимназию, но вскоре переехали во Франкфурт. Ученый всегда с ностальгией вспоминал детство, проведенное в Санкт-Петербурге, и хотя всю оставшуюся жизнь прожил в Германии, никогда не ощущал себя там как дома. Насколько известно (и это очень похоже на его романтическую и даже экзальтированную натуру), после 1856 года он больше никогда не писал по-русски. По дневникам времен гимназии видна его все возрастающая склонность к математике. Хотя отец настаивал на том, чтобы Георг изучал инженерное дело, в 1863 году он поступил в Берлинский университет, желая посвятить себя своему настоящему призванию, и даже страсти, — математике. В то время это был один из главных мировых математических научных центров. Здесь преподавали знаменитые математики Карл Вейерштрасс и Эрнст Куммер, оба они стали учителями Кантора. Также его наставником был Леопольд Кронекер, со временем тот оказался одним из самых яростных противников теории бесконечности.

Кантор окончил Берлинский университет в 1867 году и спустя два года получил место профессора в Галльском университете. Забегая вперед, отметим, что именно в Галле ученый развил свою теорию математической бесконечности, именно там он сделал открытия, благодаря которым стал одной из важнейших фигур в математике. Его идеи не всегда встречали понимание и, напротив, часто вызывали отторжение. Мы уже упомянули о Кронекере, который сделал все возможное, чтобы воспрепятствовать распространению идей Кантора. Еще один пример относится к 1874 году, когда Кантор захотел опубликовать свои первые открытия в исследовании бесконечности. Черновик его статьи увидел Вейерштрасс и посоветовал Кантору не упоминать о самых радикальных выводах разбираемых теорем. Более того, он предложил вообще не говорить о бесконечности. Почему у Кантора было так много противников? Какие выводы следовали из статьи 1874 года и в чем заключалась их революционность? Чтобы ответить на эти вопросы, мы должны сначала ознакомиться с историей бесконечности.


ПОТЕНЦИАЛЬНАЯ ИЛИ АКТУАЛЬНАЯ

Что такое бесконечность? Точнее, что мы имеем в виду, когда утверждаем, что совокупность объектов бесконечна? Прежде всего уточним, что будем использовать слово «объект» в самом широком значении, включающем в себя и абстрактные, и воображаемые объекты. Например, эта группа может состоять из всех дней декабря 3000 года.

Проанализируем сперва противоположное понятие, которое нам гораздо ближе, — конечность. Что мы подразумеваем, говоря, что некая группа объектов конечна?

Само по себе это слово означает «то, что заканчивается», «то, что не продолжается бесконечно». В таком случае принято думать, что группа объектов конечна, если хотя бы теоретически их можно пересчитать по одному так, что в определенный момент подсчет завершится.

Родители Кантора — Георг Вольдемар Кантор, успешный предприниматель, и Мария Анна Бойм, виртуозная скрипачка.

Мемориальная доска на доме в Санкт- Петербурге, где родился Кантор.

Берлинский университет, 1880 год. Здесь в 1867 году Кантор получил степень доктора математики.


Совокупность всех дней декабря 3000 года, которую мы привели выше, конечна. Возьмем еще один пример: представим, что всех взрослых людей, населяющих Землю в данный момент, попросили герметически закрыть бутылки с водой. Количество молекул кислорода, содержащихся в миллиардах этих бутылок, все равно будет конечным. Разумеется, на практике в этом случае было бы чрезвычайно трудно подсчитать все объекты, входящие в эту группу, но конкретные сложности не имеют значения для понятия конечности. Главное, что теоретически рано или поздно подсчет завершился бы, даже если на это ушли бы века. Бесконечной же группа является, если при пересчете по одному всех составляющих его частей они никогда не закончатся. Подчеркнем, что в этом определении мы используем слово «никогда» не в метафорическом смысле, не как синоним «очень большого количества времени», его надо понимать буквально: «никогда, бесконечно».


Еще от автора Густаво Пиньейро
У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Рекомендуем почитать
Посткапитализм. Путеводитель по нашему будущему

Зарождение и развитие капитализма сопровождалось как его циклическими кризисами, так и его возрождениями в новых обличьях. Однако в реалиях XXI века капиталистическая система, по мнению Пола Мейсона, более не способна адаптироваться к новым вызовам, что означает ее фактический крах. Раз так, то главный вопрос: каким может быть будущее, если капиталистические перспективы неутешительны? Есть ли шанс создать новую стабильную и социально ориентированную глобальную финансовую систему? В своем исследовании Пол Мейсон в качестве альтернативы предлагает модель «посткапитализма», основы которой можно найти в современной экономической системе, и они даже сосуществуют с ней.


Перо и маска

«Настоящая книга представляет собою сборник новелл о литературных выдумках и мистификациях, объединенных здесь впервые под понятиями Пера и Маски. В большинстве они неизвестны широкому читателю, хотя многие из них и оставили яркий след в истории, необычайны по форме и фантастичны по содержанию».


Мир истории: Россия в XVII столетии

О пути, который прошла Русь на протяжении XIII–XV веков, от политической раздробленности накануне татаро-монгольского нашествия до победы в Куликовской битве и создания централизованного Русского государства, рассказывают доктор исторических наук И. Б. Греков и писатель Ф. Ф. Шахмагонов. Виктор Иванович Буганов — известный советский ученый, доктор исторических наук, заведующий отделом источниковедения Института истории СССР Академии наук СССР. Его перу принадлежит более 300 научных работ, в том числе пять монографий, и научно-популярные книги.


Неудобное наследство: Гены, расы и история человечества

Человечеству в ХХ веке пришлось пережить многие войны, национальные конфликты и революции, сопровождавшиеся кровавыми расправами одних сторон над другими. Характер и масштаб их был разный, но в основе своей они нередко несли расовые противоречия.С тех пор научное сообщество в своем большинстве наложило гласные и негласные запреты не только на явно расистские учения, как, например, евгенику, но и на вполне научные области знания — среди них генетические, биологические, антропологические направления, связанные с развитием и особенностями человеческих рас.


[Не]правда о нашем теле. Заблуждения, в которые мы верим

Знать правду весьма полезно, особенно о своей жизни и своем здоровье. Это экономит силы, время и деньги, которых можно лишиться, гоняясь за химерами. Мифы о здоровье окружают нас везде, и их своевременное развенчание — залог полноценной жизни! В этой книге Андрей Сазонов собрал тридцать распространенных медицинских мифов, ложных утверждений, о который все не только слышали, но и успешно претворяли в жизнь. Какие продукты сжигают жиры, и есть ли смысл в перекусах? Вода обычная и минеральная — нужно ли нам выпивать 8 стаканов ежедневно? Седина от стресса и аллергия от тополиного пуха — где правда? Каждый развенчанный миф — шаг к осознанию того, как действительно нужно следить за своим здоровьем. Давайте жить качественно! Лечится тем, что помогает, покупать то, что нужно, делать то, что идет нам на пользу. Ударим по мифам научным подходом!


Великая разруха Московского государства, 1598–1612 гг.

В русской истории 14 лет, прошедших с 1598 по 1612 год, называют «разрухою» или «Смутным временем». «Смятения» Русской земли, или «Московская трагедия», как писали о ней иностранцы, началась с прекращением династии Рюриковичей, т. е. после кончины Царя Фёдора Ивановича, и кончилась, когда земские чины, собравшиеся в Москве в начале 1613 г., избрали на престол в Цари Михаила Фёдоровича, родоначальника новой династии Дома Романовых.