Аппаратные интерфейсы ПК - [207]

Шрифт
Интервал

Для виртуализации памяти (и защиты) в 32-разрядных процессорах применяется иной механизм, основанный на блоке страничной переадресации — принципиальной новинке 32-разрядных процессоров х86. В его задачу входит отображение 32-разрядного линейного адреса (продукта блока сегментации) на 32- или 36-разрядный физический адрес, формируемый на системной шине процессора при его обращениях к памяти. В отличие от блока сегментации, оперирующего блоками разного размера (сегментами), блок страничной переадресации оперирует страницами одинакового размера. Переадресация выполняется на основе таблиц страниц, где для каждой страницы логической памяти имеется свой описатель. В этом описателе имеется признак присутствия страницы в физической памяти, и для присутствующих страниц указывается базовый адрес физического отображения. Кроме того, имеются биты, управляющие доступом к странице по чтению и записи с различных уровней привилегий, возможностью ее кэширования, и некоторые служебные биты. При обращении программы к отсутствующей странице процессор вырабатывает исключение, обработчик которого занимается подкачкой нужной страницы из внешней памяти (с диска) в ОЗУ. Этот обработчик и реализует виртуальную память с подкачкой страниц по запросу (Demand-Paged Virtual Memory), которая в настоящее время обычно и подразумевается под виртуальной памятью. При недостатке свободного места в физической памяти обработчик выполняет и замещение страниц, по его мнению, наименее нужных, выгружая их на диск. Создав несколько наборов описателей страниц, можно получить несколько виртуальных адресных пространств, каждое из которых имеет размер до 4 Гбайт, причем страницы разных пространств могут быть полностью изолированы друг от друга, а могут и частично пересекаться. В многозадачной ОС каждая задача (виртуальная машина) имеет собственное (как ей представляется) адресное пространство.

Первоначально блок страничной переадресации работал со страницами размером 4 Кбайт. В дополнение к этому базовому механизму в процессор Pentium ввели возможность работы и со страницами размером 4 Мбайт (режим PSE). В ряде процессоров P6 разрядность физического адреса увеличена до 36 бит, и все процессоры P6 имеют возможность включение режима переадресации РАЕ, позволяющего отображать страницы размером 4 Кбайт и 2 Мбайт с расширением физического адреса. С процессорами Pentium III появился режим преобразования PSE-36, в котором блок оперирует 4-Мбайтными страницами в 36-битном физическом пространстве и сохраняется возможность работы со стандартными 4-Кбайтными страницами базового режима. Это позволяет довольно эффективно управляться с современными объемами физической памяти компьютера.

В стандартном реальном режиме 32-разрядные процессоры работают с памятью так же, как и 80286, с возможностью адресации в диапазоне 0-10FFEFh, причем вентиль Gate A20 ввели уже в сам процессор. Физический адрес вычисляется с участием сегментных регистров, размер непрерывного сегмента — 64 Кбайт. По умолчанию в реальном режиме адреса формируются с использованием только младших 16 бит 32-разрядных регистров, правда, для каждой инструкции можно с помощью префиксов изменить разрядность адресных компонентов на 32 бита. Однако и при этом невозможно пересечь границу 64-Кбайтного сегмента — сработает исключение защиты. В стандартном реальном режиме блок страничной переадресации не работает, и физический адрес совпадает с линейным. С помощью временного переключения в защищенный режим можно настроить таблицы страниц, разрешить преобразование и далее в реальном режиме задействовать страничное преобразование. Этот трюк используется менеджерами памяти типа EMM386 для работы со свободными блоками UMA.

Есть и еще один режим, неофициальный, но тоже работающий на всех 32-разрядных процессорах х86, — «нереальный» (unreal), он же «большой реальный» (big real). Он позволяет процессору в реальном режиме обращаться к данным, расположенным в любом месте 4-Гбайтного пространства линейных (и физических) адресов. Этот режим базируется на логике блока сегментации, которая при вычислении линейного адреса во время обращений к памяти пользуется скрытыми программно-недоступными регистрами дескрипторов сегментов. Из этих регистров берется базовый адрес, из них же берется и лимит, который используется схемой защиты. В этих регистрах кэшируются дескрипторы сегментов, загружаемые из памяти во время исполнения инструкций, переопределяющих значения сегментных регистров (>CS, >DS, >SS, >ES, >FS и >GS) в защищенном режиме. По аппаратному сбросу в эти скрытые регистры заносятся «неинтересные» параметры стандартного реального режима, с лимитом 64 Кбайт. В реальном режиме при переопределении сегментных регистров значение базового адреса берется как 16-кратное значение, загружаемое в соответствующий сегментный регистр, а лимит устанавливается в 64 Кбайт. Тем не менее, если в защищенном режиме в сегментный регистр загрузить селектор дескриптора, в котором описан сегмент размером 4 Гбайт с нулевым базовым адресом и возможностью полного доступа на любом уровне привилегий, переключиться в реальный режим и не трогать этот сегментный регистр, то далее процессор будет иметь доступ ко всему этому сегменту в данной модификации реального режима. Однако такая «благодать» распространяется только лишь на доступ к


Рекомендуем почитать
Удаление предустановленной Windows 8

На первый взгляд процедура удаления Windows 8 ничем не отличается от вполне обычного форматирования винчестера с последующей установкой системы. К сожалению, все гораздо сложней.


Программируем Arduino. Профессиональная работа со скетчами.

Arduino — стандартный микроконтроллер, получивший широкое признание у инженеров, мастеров и преподавателей благодаря своей простоте, невысокой стоимости и большому разнообразию плат расширения. Платы расширения, подключаемые к основной плате Arduino, позволяют выходить в Интернет, управлять роботами и домашней автоматикой.Простые проекты на основе Arduino не вызывают сложностей в реализации. Но, вступив на территорию, не охваченную вводными руководствами, и увеличивая сложность проектов, вы быстро столкнетесь с проблемой нехватки знаний — врагом всех программистов.Эта книга задумана как продолжение бестселлера «Programming Arduino: Getting Started with Sketches».


Работаем на нетбуке. Начали!

Вы приобрели нетбук? И теперь хотите понять, чем он отличается от привычного всем ноутбука? Тогда вы держите в руках действительно необходимую книгу. Прочитав ее, вы не только освоите все тонкости, относящиеся к работе с нетбуками, но и узнаете о том, как работать на компьютере. Вы научитесь выбирать мобильный компьютер и аксессуары к нему, узнаете, как установить и настроить операционную систему, научитесь пользоваться пакетом Microsoft Office, выясните, какие программы следует иметь на жестком диске, как защитить сам ноутбук и данные на нем, можно ли модернизировать нетбук и что делать в случае его поломки.


1001 совет по обустройству компьютера

В книге собраны и обобщены советы по решению различных проблем, которые рано или поздно возникают при эксплуатации как экономичных нетбуков, так и современных настольных моделей. Все приведенные рецепты опробованы на практике и разбиты по темам: аппаратные средства персональных компьютеров, компьютерные сети и подключение к Интернету, установка, настройка и ремонт ОС Windows, работа в Интернете, защита от вирусов. Рассмотрены не только готовые решения внезапно возникающих проблем, но и ответы на многие вопросы, которые возникают еще до покупки компьютера.


Элементы схемотехники цифровых устройств обработки информации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Wi-Fi: Все, что Вы хотели знать, но боялись спросить

Жизнь современного человека — это движение. Мобильность для нас становится одним из самых важных моментов для работы, для общения, для жизни. Многие из нас сейчас уже не представляют жизнь без сотовых телефонов, которые из средства роскоши превратились в предмет, без которого жизнь современного человека стала просто немыслима. Многие уже оценили все преимущества Bluetooth, GPRS. Эти устройства превратили наши телефоны из средств связи в незаменимых помощников в работе. К сожалению, один из самых главных недостатков этих беспроводных технологий — малый радиус действия и низкая скорость передачи данных, что сейчас становится очень важным фактором для всех нас.