Аппаратные интерфейсы ПК - [206]

Шрифт
Интервал

— это исполнение программной инструкции (команды) обращения к интересующей ячейке. Логическая операция не всегда порождает ожидаемую физическую операцию: при определенных условиях она может блокироваться средствами защиты процессора, вызывая даже принудительное завершение программы, или же эмулироваться, создавая иллюзию физического исполнения.

Безопасность в защищенном режиме базируется на 4-уровневой системе привилегий. В большинстве современных ОС ради упрощения и экономии процессорного времени используются только два крайних уровня — нулевой (supervisor), с неограниченными возможностями, и третий (user), с самыми жесткими ограничениями. Смена уровней привилегий при исполнении программы занимает много тактов процессора, но это вынужденная плата за реализацию защиты, без которой устойчивую ОС не построить. Более подробно механизмы защиты и виртуализации памяти, ввода-вывода и прерываний в процессорах х86 описаны в литературе [6, 7], здесь же изложены лишь некоторые прикладные аспекты их работы.

12.5.1. Возможности адресации памяти процессорами различных поколений

Сложность обращения к памяти в PC обусловлена свойствами процессоров х86 разных поколений и требованием обратной совместимости новых процессоров и компьютеров со старым ПО.

Процессорам 8086/88 было доступно адресное пространство 1 Мбайт с диапазоном адресов 0-FFFFFh, причем физический 20-битный адрес вычислялся с помощью двух 16-битных компонентов по формуле >Addr = >Seg×16 + >Offset, где >Seg — содержимое сегментного регистра (>CS, >DS, >SS или >ES), a >Offset — исполнительный адрес, формируемый из одного или нескольких слагаемых в соответствии с выбранным режимом адресации. Эта сегментная модель адресации позволяет программам оперировать с непрерывными блоками памяти (сегментами) размером не более 64 Кбайт. Для манипуляций с памятью большего размера требовалось переключение сегментов с помощью специальных инструкций процессора, что усложняло программирование. Заметим, что при >Seg = FFFFh и >Offset = FFFFh данная формула дает адрес 10FFEFh, но ввиду 20-битного ограничения на шину адреса эта комбинация в физической памяти указывает на 0FFEFh. Таким образом, адресное пространство как бы сворачивается в кольцо с небольшим «нахлестом».

В процессоре 80286 шина физического адреса была расширена до 24 бит, и введен новый режим работы — защищенный (Protected Mode), в котором программа может обращаться к 16-мегабайтному пространству физической памяти через логическое пространство виртуальной памяти. Здесь виртуальная память строилась на основе той же сегментной модели памяти с 16-разрядными регистрами. Физический адрес формировался суммированием 16-разрядного исполнительного адреса (смещения внутри сегмента) с 24-разрядным базовым адресом сегмента.

Кроме защищенного режима, в процессоре 80286 имеется и реальный режим, в котором процессор ведет себя почти так же, как и 8086 (но более быстрый). Здесь физический адрес вычисляется так же, как и в 8086/88, но из-за ошибки разработчиков та самая единица в бите A20, которая отбрасывалась в процессорах 8086/88, теперь попадает на шину адреса, и в результате максимально доступный физический адрес в реальном режиме достиг 10FFEFh. Для обеспечения полной совместимости с процессором 8086/88 в схему PC ввели вентиль линии A20 шины адреса — GateA20, который либо пропускает сигнал от процессора, либо принудительно обнуляет линию A20 системной шины адреса. Этот вентиль должен быть открыт при работе в защищенном режиме, а также когда в реальном режиме нужны дополнительные (64 К-16) байт памяти. Вентиль управляется через контроллер клавиатуры (см. п. 8.1.2) или иным специфическим способом.

В 32-разрядных процессорах, начиная с 80386, сохранена та же идея обращения к памяти с участием сегментных регистров (16-разрядных), но регистры процессора, участвующие в формировании адреса, позволяют адресовать уже 2³² = 4 Гбайт памяти в каждом сегменте. Базовый адрес сегмента берется из специальных структур данных — дескрипторов сегментов. Кроме базового адреса в дескрипторе описывается его лимит (длина), назначение (код или данные), возможность записи и чтения, а также уровень привилегий программы, позволяющий обращаться к данному сегменту. Дескрипторы предварительно программно формируются в памяти, где их наборы хранятся в виде таблиц дескрипторов. Процессор имеет средства защиты памяти, контролирующие использование сегментов. Программа может обращаться лишь к тем сегментам памяти, описание которых имеется в доступных дескрипторах. Виртуальное адресное пространство, доступное программе, имеет объем до (16 К-2) сегментов (число возможных дескрипторов), каждый из которых может иметь размер до 4 Гбайт. Дескриптор выбирается с помощью селектора, загружаемого в сегментный регистр (>CS, >DS, >SS, >ES, >FS или >GS). Однако это виртуальное адресное пространство отображается блоком сегментации в логическое адресное пространство с опять-таки 32-разрядным линейным адресом, то есть объемом 4 Гбайт. По замыслу разработчиков процессора, это отображение с подкачкой требуемых сегментов с диска и выгрузкой неиспользуемых должно выполняться диспетчером виртуальной памяти операционной системы. Практически такая виртуализация применялась на процессорах 80286 (с 16-разрядными регистрами), поскольку иных механизмов не существовало.


Рекомендуем почитать
Удаление предустановленной Windows 8

На первый взгляд процедура удаления Windows 8 ничем не отличается от вполне обычного форматирования винчестера с последующей установкой системы. К сожалению, все гораздо сложней.


Программируем Arduino. Профессиональная работа со скетчами.

Arduino — стандартный микроконтроллер, получивший широкое признание у инженеров, мастеров и преподавателей благодаря своей простоте, невысокой стоимости и большому разнообразию плат расширения. Платы расширения, подключаемые к основной плате Arduino, позволяют выходить в Интернет, управлять роботами и домашней автоматикой.Простые проекты на основе Arduino не вызывают сложностей в реализации. Но, вступив на территорию, не охваченную вводными руководствами, и увеличивая сложность проектов, вы быстро столкнетесь с проблемой нехватки знаний — врагом всех программистов.Эта книга задумана как продолжение бестселлера «Programming Arduino: Getting Started with Sketches».


Работаем на нетбуке. Начали!

Вы приобрели нетбук? И теперь хотите понять, чем он отличается от привычного всем ноутбука? Тогда вы держите в руках действительно необходимую книгу. Прочитав ее, вы не только освоите все тонкости, относящиеся к работе с нетбуками, но и узнаете о том, как работать на компьютере. Вы научитесь выбирать мобильный компьютер и аксессуары к нему, узнаете, как установить и настроить операционную систему, научитесь пользоваться пакетом Microsoft Office, выясните, какие программы следует иметь на жестком диске, как защитить сам ноутбук и данные на нем, можно ли модернизировать нетбук и что делать в случае его поломки.


1001 совет по обустройству компьютера

В книге собраны и обобщены советы по решению различных проблем, которые рано или поздно возникают при эксплуатации как экономичных нетбуков, так и современных настольных моделей. Все приведенные рецепты опробованы на практике и разбиты по темам: аппаратные средства персональных компьютеров, компьютерные сети и подключение к Интернету, установка, настройка и ремонт ОС Windows, работа в Интернете, защита от вирусов. Рассмотрены не только готовые решения внезапно возникающих проблем, но и ответы на многие вопросы, которые возникают еще до покупки компьютера.


Элементы схемотехники цифровых устройств обработки информации

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Wi-Fi: Все, что Вы хотели знать, но боялись спросить

Жизнь современного человека — это движение. Мобильность для нас становится одним из самых важных моментов для работы, для общения, для жизни. Многие из нас сейчас уже не представляют жизнь без сотовых телефонов, которые из средства роскоши превратились в предмет, без которого жизнь современного человека стала просто немыслима. Многие уже оценили все преимущества Bluetooth, GPRS. Эти устройства превратили наши телефоны из средств связи в незаменимых помощников в работе. К сожалению, один из самых главных недостатков этих беспроводных технологий — малый радиус действия и низкая скорость передачи данных, что сейчас становится очень важным фактором для всех нас.