Альтернативные источники энергии и энергосбережение - [60]

Шрифт
Интервал



Рис. 3.22.Солнечная электростанция тарельчатого типа


Высокая оптическая эффективность и малые начальные затраты делают системы зеркал-двигателей наиболее эффективными из всех гелиотехнологий. На этих установках удалось добиться практического КПД 29 %. Такие системы представляют собой оптимальный вариант как для автономных потребителей (в киловаттном диапазоне), так и для гибридных (в мегаваттном диапазоне), тарельчатого типа предприятии (http://portal.tpu.ru:7777/).



Рис. 3.23.Схема параболического концентратора


Солнечные электростанции, использующие параболические концентраторы

Параболоцилиндрические установки — на сегодня наиболее развитая из солнечных энергетических технологий и именно они, вероятно, будут использоваться в ближайшей перспективе. Схема параболоцилиндиреской установки показана на рис. 3.23.

Солнечные пруды. Ни фокусирующие зеркала, ни солнечные фотоэлементы (см. ниже) не могут вырабатывать энергию в ночное время. Для этой цели солнечную энергию, накопленную днем, нужно сохранять в теплоаккумулирующих баках. Этот процесс естественным образом происходит в так называемых солнечных прудах (рис. 3.24).



Рис. 3.24.Солнечный пруд


Солнечные пруды имеют высокую концентрацию соли в придонных слоях воды, неконвективный средний слой воды, в котором концентрация соли возрастает с глубиной и конвекционный слой с низкой концентрацией соли — на поверхности (http://www.energy-bio.ru/suncolll2.htm).

Солнечный свет падает на поверхность пруда, и тепло удерживается в нижних слоях воды благодаря высокой концентрации соли. Вода высокой солености, нагретая поглощенной дном пруда солнечной энергией, не может подняться из-за своей высокой плотности.

Она остается у дна пруда, постепенно нагреваясь, пока почти не закипает (в то время как верхние слои воды остаются относительно холодными). Горячий придонный «рассол» используется днем или ночью в качестве источника тепла, благодаря которому особая турбина с органическим теплоносителем может вырабатывать электричество.

Средний слой солнечного пруда выступает в качестве теплоизоляции, препятствуя конвекции и потерям тепла со дна на поверхность. Разница температур на дне и на поверхности воды пруда достаточна для того, чтобы привести в действие генератор. Теплоноситель, пропущенный по трубам через нижний слой воды, подается далее в замкнутую систему Рэнкина, в которой вращается турбина для производства электричества. Температура воды в пруде может достичь и удерживаться на уровне выше 90 °C в теплоаккумулирующей зоне. Во время пиковой мощности эта установка способна производить более 100 кВт-ч электроэнергии в час, а объем опресненной питьевой воды составляет более 350000 литров в сутки.


Аэростатные солнечные электростанции

Одним из основных сдерживающих факторов развития солнечной энергетики является проблема выбора места для размещения солнечных электростанций.

Мощность солнечного излучения на поверхности Земли при безоблачном небе составляет около 1 кВт/м>2. Для получения электроэнергии в промышленных масштабах необходимы мощности порядка миллиона киловатт. Это значит, что для промышленной солнечной электростанции с коэффициентом полезного действия порядка 10 % и с учетом неравномерности мощности солнечного излучения в течение суток необходима площадь в десятки квадратных километров (http://www.t3000.ru).

Площадка для размещения приемников солнечного излучения должна быть ровной, пригодной для обслуживания и ремонта оборудования, свободной от хозяйственной деятельности человека.

Найти подходящую площадку, удовлетворяющую этим требованиям, чрезвычайно сложно даже в пустынях Австралии и Северной Африки, не говоря уже о густонаселенных странах Европы и Азии.

Идеальным решением этой проблемы является размещение солнечных электростанций на поверхности морей и океанов, площадь которых в пять раз больше, чем площадь суши. Однако, традиционные солнечные электростанции не пригодны для морского базирования.

Ситуация коренным образом изменилась после изобретения солнечных аэростатных электростанций («Энергия», № 4, 2005). Принципиальная схема солнечной аэростатной электростанции приведена на рис. 3.25.



Рис 3.25.Принципиальная схема солнечной аэростатной электростанции


Принцип работы солнечной аэростатной электростанции с паровой турбиной заключается в поглощении поверхностью баллона аэростата солнечного излучения и нагрева за счет этого водяного пара, находящегося внутри баллона. Современные селективные поглощающие материалы способны нагреваться от прямых неконцентрированных солнечных лучей до 200 °C и более.

Оболочка баллона выполнена двухслойной. Внешняя оболочка является прозрачной и пропускает солнечное излучение. Внутренняя оболочка покрыта селективным поглощающим слоем и разогревается солнечным излучением до 150–180 °C.

Слой воздуха между оболочками является теплоизолятором, уменьшающим потери тепла в атмосферу.

Температура пара внутри баллона составляет 130–150 °C. Давление внутри баллона равно атмосферному давлению.

Из баллона пар по гибкому паропроводу подается на паровую турбину, и после турбины конденсируется в конденсаторе. Из конденсатора вода насосом вновь подается внутрь баллона, распыляется и испаряется при контакте с перегретым водяным паром.


Рекомендуем почитать
Юный техник, 2014 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.