Алиса в Стране Смекалки - [10]

Шрифт
Интервал

Глава 4

Грифон и Черепаха Квази

А. Грифон объясняет свой метод

– Вот видишь, я был прав, – сказал Грифон, – это всего лишь ее выдумки! Здесь у нас много чего выдумывают, – продолжал он. – Например, на суде выдумали, будто я украл крендели, а я в жизни не крал кренделей. Это они все выдумали, будто я украл крендели!

– Не понимаю, – сказала Алиса. – Вас признали виновным, и Король приговорил вас к тюремному заключению. Почему же вы не в тюрьме?



– Здесь у нас в тюрьму не сажают, – засмеялся Грифон. – Только выдумывают, будто сажают!

Столь странные обычаи несколько удивили Алису.

– Кстати сказать, – продолжал Грифон, – хороши были задачи, которые ты решала о всяких там судах! А знаешь, какие задачи я люблю больше всего?

– Не знаю, – призналась Алиса. – А какие?

– Те, которые озадачивают, – ответил Грифон.

– Это-то понятно, – заметила Алиса. – А разве не все задачи озадачивают?

– Разумеется, нет! – засмеялся Грифон. – Это только выдумывают, будто все задачи озадачивают!

– Допустим, – возразила Алиса. – А что бы вы в таком случае назвали озадачивающей задачей?

– Разумеется, такую задачку, из-за которой разыгрываются сражения, – ответил Грифон. – Вот потеха так потеха, когда из-за задачи начинается настоящая битва!

– А почему люди непременно должны сражаться из-за задачи? – спросила Алиса.

– Как же им не сражаться, когда одни думают так, другие – иначе. Обычно и те и другие думают неправильно, и это интереснее всего!

– Взять хотя бы задачку о Джордже и обезьянке. Слыхала о такой?

– Не думаю, чтобы мне когда-нибудь приходилось слышать о чем-нибудь подобном, – ответила Алиса.

– Тогда слушай. У одного шарманщика была обезьянка. Обычно она сидела на шарманке. Однажды мальчишка по имени Джордж вздумал подразнить обезьянку и принялся ходить вокруг шарманки, и, пока он ходил вокруг да около шарманки, обезьянка не спускала с него глаз и все время была обращена мордочкой к Джорджу. Спрашивается, обошел ли Джордж вокруг обезьянки или нет, когда он описал полный круг вокруг шарманки?

Алиса задумалась.

– Трудно сказать, – наконец сказала она. – А как на самом деле: обошел или не обошел?

– Я думаю, что не обошел, – ответил Грифон, – но другие считают, что обошел.

– А как же они рассуждают? – поинтересовалась Алиса.

– Они говорят, что поскольку Джордж описал полный круг вокруг шарманки, а обезьянка все время сидела на шарманке, то Джордж описал полный круг и вокруг обезьянки. Значит, Джордж обошел вокруг обезьянки. Я рассуждаю иначе: если бы Джордж обошел вокруг обезьянки, то он непременно увидел ее со спины. А разве он видел обезьянку со спины? Нет! Следовательно, Джордж не мог обойти вокруг обезьянки!

– Все это очень интересно! – не могла не признать Алиса. – Мне понятны и ваши рассуждения и рассуждения тех, кто считает, что Джордж обошел вокруг обезьянки, но я не могу отдать предпочтение ни тем ни другим.


– А вот еще одна задачка, – сказал Грифон. – Бы тут у нас один американец, который торговал разными подержанными вещами. Как-то раз посетитель купил у него подержанный костюм за десять долларов. Вскоре за тем костюм ему чем-то не понравился и он вернул его торговцу, продав за восемь долларов. Потом в лавку зашел другой посетитель и купил этот же костюм за девять долларов. Сколько прибыли получил торговец от продажи костюма?

Алиса задумалась.

– Должен тебе сказать, – прервал ее размышления Грифон, – что мне приходилось слышать от трех различных типов людей три различных ответа. Одниговорили мне, что торговец получил два доллара прибыли от первого покупателя, так как продал ему костюм за десять долларов, а купил обратно лишь за восемь долларов. Затем костюм, купленный за восемь долларов, он продал за девять долларов второму покупателю и получил один доллар прибыли. Всего продавец получил, таким образом, три доллара прибыли.

Другие рассуждали иначе. Костюм, говорили они, стоит десять долларов. От продажи костюма первому покупателю и покупки у него продавец выручил два доллара (в этом мнения людей первого и второго типа сходятся). Но затем продавец, продав костюм, стоящий десять долларов, второму покупателю за девять долларов, потерпел убыток в один доллар, тем самым потеряв один из двух долларов, вырученных в результате купли-продажи с первым покупателем. Следовательно, прибыль от двух покупателей составляет один доллар.

Представители третьего типа согласны с представителями двух других типов в том, что от продажи костюма первому покупателю и последующей покупки того же костюма торговец выручил два доллара. Когда же он продал костюм второму покупателю за девять долларов, то, по существу, совершил равнозначный обмен костюма на те девять долларов, которые тот стоил. Поэтому от второго покупателя торговец не получил прибыли и не потерпел убытка. Следовательно, общая прибыль от двух покупателей составила два доллара.

– Вот видишь, – со смехом подвел итог Грифон, – одни говорят, что прибыль составила три доллара, другие сходятся на двух, а третьи считают, что торговец заработал только один доллар. Забавно, не правда ли?

– А чье решение правильно? – спросила Алиса.


Еще от автора Рэймонд М Смаллиан
Принцесса или тигр?

Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.


Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.


Приключения Алисы в Стране Головоломок

Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.