Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - [109]
Гальтон изобрел на удивление простое приспособление, названное «квинканкс»[64], для объяснения той математики, что стоит за обожаемой им кривой. Слово «квинканкс» исходно означало пятерку — пять точек, расположенных как на игральной кости 5, а придуманное им приспособление представляло собой нечто вроде пинбол-машинки — ящик с прозрачной передней стенкой, в заднюю стенку которого в шахматном порядке вбиты штырьки. Сверху в ящик через воронку, расположенную посередине, кидаются шарики. Нижняя часть ящика разделена перегородками, число которых равно числу штырьков в последнем ряду. Падая, шарики скапливаются на дне и образуют столбики. Распределение высот этих столбиков напоминает колоколообразную кривую[65].
Квинканкс
Разобраться в том, что здесь происходит, можно используя идею о вероятности. Сначала представим себе квинканкс с одним-единственным штырьком; когда шарик ударяется о него, исход такого соударения случаен: в 50 процентах случаев шарик отскочит налево, а в 50 процентах случаев — направо. Другими словами, с вероятностью 1:2 он попадет в положение слева, а с вероятностью 1:2 — справа от центра.
Теперь добавим второй ряд штырьков. Теперь шарик может повернуть или сначала налево и потом еще раз налево, что мы будем обозначать как LL, или налево и потом направо, что мы обозначим как LR, или же, в тех же обозначениях, пройти пути RL или RR. Поскольку исход «сначала повернуть налево, а затем сразу же направо» эквивалентен исходу «положение шарика не меняется», L и R сокращают друг друга (как, равным образом, и R и L), так что в результате вероятность того, что шарик попадет в левое положение, равна 1:4, вероятность того, что он попадет в середину, равна 2:4, и вероятность того, что он уйдет направо, также равна 1:4.
Добавим третий ряд. Повторяя наши рассуждения, видим, что равновероятные исходы состоят в том, что пути шарика будут LLL, LLR, LRL, LRR, RRR, RRL, RLR и RLL. Это дает вероятность 1:8 приземлиться в крайнем левом положении, 3:8 — слева рядом с центром, 3:8 — справа рядом с центром и 1:8 — в крайнем правом положении.
Другими словами, если в квинканксе имеется два ряда и мы накидаем туда уйму шариков, то по закону больших чисел шарики лягут на дно в отношении, близком к 1:2:1.
Если рядов три, то шарики соберутся на дне в отношении 1:3:3:1.
Если рядов четыре, то в отношении 1:4:6:4:1.
Подсчитывая вероятности и дальше, для квинканкса с десятью рядами штырей получим, что шарики распределятся в отношении
1:10:45:120:210:252:210:120:45:10:1.
Если нанести эти числа на график, то получатся распределения, показанные на рисунке.
Форма кривой становится все более знакомой по мере увеличения числа рядов из штырей. На рисунке приведены также диаграммы, получающиеся для 100 и 1000 рядов. (Для двух последних диаграмм показаны только их центральные области, поскольку значения в областях, уходящих налево и направо, слишком малы, чтобы их можно было изобразить.)
Итак, как же игра в пинбол связана с тем, что имеет место в реальном мире? Представим себе, что каждый ряд штырей в квинканксе — это случайная переменная, которая приводит к ошибке в измерении: или добавляет немного к измеряемому значению, или же, наоборот, немного из него вычитает. В случае Галилея и его телескопа один из рядов, составленных из штырей, мог бы представлять наличие проходящего рядом атмосферного фронта, а другой ряд мог бы представлять наличие загрязняющих примесей в воздухе. Каждая переменная вносит тот или иной вклад в ошибку — в точности как шарик отскакивает в квинканксе вправо или влево. При любом измерении имеется много миллионов ненаблюдаемых случайных ошибок, однако их совместный эффект приведет к результатам, распределенным по колоколообразной кривой.
Если характеристики, относящиеся к народонаселению, распределены нормально — другими словами, группируются вблизи среднего и ложатся на колоколообразную кривую, — и если колоколообразная кривая есть результат случайных ошибок, то, как утверждал Кетле, вариации в человеческих характеристиках можно воспринимать как ошибки, отвечающие отклонению от некоего образца. Он назвал такой образец «l’homme тоуеп» — «средний человек». Популяции, утверждал он, составлены из отклонений от этого образца. По мысли Кетле, следовало всячески стремиться к тому, чтобы быть средним, потому что именно таким образом общество удерживалось бы под контролем, а отклонения от среднего, писал он, приводят к «телесному уродству и моральному разложению». Хотя концепция «l'homme тоуеп» не получила признания в науке, использование этого термина просочилось в широкие слои общества. Часто, рассуждая о морали или вкусах, мы апеллируем к тому, что подумал или почувствовал бы средний представитель человечества, и говорим о том, что приемлемо «с точки зрения среднего человека».
Кетле превозносил идею среднего, но Гальтон смотрел на нее свысока. Как уже говорилось, Гальтон заметил, что результаты экзаменов следуют нормальному распределению. Больше всего людей получают средние оценки, и лишь немногие — очень высокие или очень низкие. Сам Гальтон, кстати, происходил из семьи, которая весьма заметно возвышалась над средним. Двоюродным братом ему приходился Чарльз Дарвин, с которым он регулярно обменивался научными идеями. Лет через десять после выхода книги Дарвина «О происхождении видов» Гальтон начал теоретизировать о способах управления человеческой эволюцией. Его интересовала передача гениальности по наследству, и он задавался вопросом о том, как можно было бы повысить уровень интеллекта населения в целом. Он стремился сдвинуть колоколообразную кривую вправо. С этой целью Гальтон предложил новую область исследований, направленных на «культивацию расы», то есть повышение интеллектуального потенциала населения посредством направленного разведения одаренных людей. Одно время он думал назвать свою новую науку
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Знания всегда давались человечеству нелегко. В истории науки было все — драматические, а порой и трагические эпизоды соседствуют со смешными, забавными моментами. Да и среди ученых мы видим самые разные характеры. Добрые и злые, коварные и бескорыстные, завистливые и честолюбивые, гении и талантливые дилетанты, они все внесли свой вклад в познание мира, в котором мы живем.Уолтер Гратцер рассказывает о великих открытиях и людях науки честно и объективно, но при этом ясно: он очень любит своих героев и пишет о них с большой симпатией.
Людям свойственно спокойно принимать тот факт, что зачастую они ведут себя как животные, они даже порой гордятся, что способны на «подлинную страсть». Но люди всегда страшно удивляются, что животным часто оказываются свойственны привычки, считающиеся чисто человеческими, — от шумных пирушек (с последующим неизбежным похмельем) до конфликтов «отцов и детей», от гомосексуализма до мафии. Английский писатель и биолог Огастес Браун пишет об этом с чисто английским юмором и тонкой наблюдательностью.
Артур Миллер, известный американский историк науки (сейчас живет в Лондоне), повествует о выдающихся открытиях астрофизиков XX века. В центре рассказа — судьба индийского физика, лауреата Нобелевской премии Субрахманьяна Чандрасекара, чьи теории во многом сформировали наши сегодняшние представления о Вселенной. Книга Миллера — об эволюции звезд, о белых карликах, красных гигантах, нейтронных звездах и о самых таинственных космических объектах — черных дырах, жадно пожирающих материю и энергию.
Сегодня мы уже не можем себе представить жизнь без компьютеров и Интернета. Каждый день возникают все новые и новые гаджеты, которые во многом определяют наше существование — нашу работу, отдых, общение с друзьями. Меняются наши реакции, образ мышления. Известный американский психиатр, профессор Лос-Анджелесского университета и директор Научного центра по проблемам старения Гэри Смолл вместе со своим соавтором (и женой) Гиги Ворган утверждают: мы наблюдаем настоящий эволюционный скачок, и произошел он всего за пару-тройку десятилетий!В этой непростой ситуации, говорят авторы, перед всем человечеством встает трудная задача: остаться людьми, не превратившись в придаток компьютера, и не разучиться сопереживать, общаться, любить…