Абсолютный минимум. Как квантовая теория объясняет наш мир - [17]

Шрифт
Интервал

В отношении описания эффекта интерференции математическая формулировка, основанная на максвелловских волновых функциях, совершенно не изменилась. Однако физический смысл волновой функции был пересмотрен. Вместо амплитуды электромагнитной волны в определённой области пространства, например в первом или втором плече интерферометра, волновая функция была переопределена как описание числа фотонов в некоторой области пространства. Прежде считалось, что волновая функция даёт нам амплитуду волны в некоторой области пространства, а по этой амплитуде можно вычислить интенсивность. После переопределения стало считаться, что волновая функция говорит, сколько фотонов находится в области пространства, скажем в первом плече интерферометра, и интенсивность по-прежнему можно вычислить. Такое переопределение кажется совершенно разумным, но оно ошибочно! Само представление о том, что по каждому плечу интерферометра движется половина фотонов, является глубоким заблуждением. Для корректного описания необходимо совершить скачок к квантовомеханическому мышлению.

Рис. 5.1.Луч света состоит из фотонов, которые падают на полупрозрачное зеркало. В первоначальном ошибочном описании явления интерференции в терминах фотонов считалось, что половина фотонов проходит в каждое плечо интерферометра. Фотоны из каждого плеча попадают затем в область перекрытия, где якобы фотоны из одного плеча интерферируют с фотонами из другого плеча, порождая интерференционную картину. Мысль о том, что фотоны из одного плеча интерферируют с фотонами из другого плеча, является ошибочной


В картине, где половина фотонов движется по каждому плечу интерферометра, а затем эти половины сходятся и интерферируют между собой, много ошибочного. Простейший эксперимент, выявляющий проблему в таком описании, — это анализ зависимости интерференционной картины (см. увеличенный фрагмент на рис. 5.1 внизу справа) от интенсивности. Форма наблюдаемой интерференционной картины в области перекрытия интерферометра не зависит от интенсивности света, который послужил для её создания. При выбранном методе регистрации (фотоплёнка или цифровая камера) увеличение интенсивности сокращает время, требуемое для получения качественного изображения, но рисунок на нём остаётся неизменным. Таким образом, интервалы между пиками и нулями интерференционной картины, а также их форма остаются без изменений.

Как говорилось в главе 3, периодичность рисунка зависит от угла пересечения лучей и от длины волны света. Она не зависит от интенсивности. Если повысить интенсивность, потребуется больше времени, чтобы картина прорисовалась, но сам узор не изменится по форме. Стандартная красная лазерная указка даёт мощность 1 мВт (милливатт), то есть одну тысячную ватта, или 0,001 Дж/сек (джоуль в секунду). Красный свет имеет длину волны около λ=650 нм. Пользуясь формулами λν=c и E=hν, где h — постоянная Планка, ν — частота света, а c — скорость света, можно найти, что один фотон с длиной волны 650 нм несёт энергию около 3∙10>−19Дж. Таким образом, лазерная указка мощностью 1 мВт испускает около 3∙10>15 (трёх тысяч триллионов) фотонов в секунду. Если использовать их как входящий пучок интерферометра, то зарегистрировать интерференционную картину будет очень просто, даже если интервал между её максимумами достаточно велик (см. обсуждение этого интервала в главе 3 после рис. 3.4), и вы даже сможете увидеть интерференционную картину своими глазами.

Представьте себе, что интенсивность света начинает постепенно уменьшаться. Вскоре вы уже не сможете разглядеть интерференционную картину, поскольку глаз — не очень чувствительный детектор света, но её по-прежнему можно зарегистрировать на фотоплёнку или с помощью цифровой камеры. Зафиксированный узор при этом останется неизменным. Если уменьшить интенсивность в 3000 раз — до триллиона фотонов в секунду, — рисунок останется прежним. В описании, согласно которому половина фотонов следует по одному плечу интерферометра, а другая половина — по второму, полтриллиона фотонов пойдёт по первому плечу и полтриллиона — по второму. Понизьте интенсивность до миллиарда фотонов в секунду — узор останется тем же. Дальнейшее уменьшение интенсивности до миллиона фотонов в секунду также ничего не меняет. И вот тут ошибочность описания становится очевидной. Снизьте интенсивность света так, чтобы лишь один фотон в секунду входил в прибор, — изображение вновь не изменится. С одним фотоном в секунду потребуется долгое время накапливать сигнал, чтобы увидеть интерференционную картину, но если набраться терпения и подождать, рисунок будет тот же самый.

Когда в интерферометр входит всего один фотон в секунду, внутри прибора находится лишь один фотон. Ему требуется порядка одной стомиллионной доли секунды (10>−8сек), чтобы пройти через интерферометр. При интенсивности света один фотон в секунду нет фактически ни единого шанса обнаружить внутри инструмента более одного фотона за раз, и тем не менее если получить интерференционную картину, она окажется в точности такой же. Однако модифицированное классическое описание эффекта интерференции в терминах фотонов говорит, что половина фотонов идёт по первому плечу прибора, а половина — по второму. Фотоны из первого плеча интерферируют с фотонами из второго плеча и порождают интерференционную картину. Если в каждый момент времени внутри прибора имеется лишь один фотон, то там нет другого фотона, с которым он мог бы интерферировать. Модель, согласно которой по каждому плечу прибора идёт половина фотонов, предсказывает, что интерференционная картина должна исчезать при достаточно низкой интенсивности света. Но она не исчезает. Данная модель ошибочна!


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.