Абсолютный минимум. Как квантовая теория объясняет наш мир - [15]
Рис. 4.4.Повышение интенсивности светового луча соответствует увеличению числа составляющих его фотонов. Большее число фотонов может толкнуть и выбить из металла больше электронов, так что повышение интенсивности приводит к росту числа электронов, вылетающих из металла
Красный свет выбивает более медленные электроны, чем голубой
Для того чтобы объяснить, почему смещение цвета в красную сторону (к более длинным волнам и меньшей энергии) приводит к уменьшению скорости вылетающих электронов, Эйнштейн использовал формулу, предложенную Планком (Макс Карл Эрнст Людвиг Планк, 1858–1947). Планк первым выдвинул идею о том, что энергия испускается дискретными порциями — квантами, когда объяснял другое связанное со светом явление, называемое излучением чёрного тела. Когда, например, кусок металла нагревается до высокой температуры, он начинает светиться. Так, нагревательный элемент электрокамина или калорифера светится красным. Если температура повышается, свет смещается в голубую сторону. Это относится не только к кускам металла, но также и к звёздам. Красные звёзды — относительно холодные. Жёлтые звёзды, такие как наше Солнце, — горячие. Голубые звёзды — очень горячие. В 1900 году классическая физика не могла объяснить количество света каждого цвета, испускаемого горячим объектом. Планк нашёл объяснение, которое актуально и поныне, введя новое представление о том, что электроны в металле могут «осциллировать»>{8} только с определёнными дискретными частотами. Энергетические ступени между этими частотами называются квантами. В 1918 году Планк получил Нобелевскую премию по физике
«в знак признания услуг, которые он оказал физике своим открытием квантов энергии».
От квантов энергии, открытых Планком, происходит название квантовой механики.
В своей работе Планк ввёл формулу, которая связывает частоту электрона с его энергией: E=h∙ν. В этой формуле ν — частота, обсуждавшаяся в главе 3, а h называется постоянной Планка. Её значение h=6,6∙10>−34Дж∙сек, где Дж — единица энергии джоуль, а сек — секунды. В этой формуле ν измеряется в герцах (Гц), то есть в обратных секундах (1/сек); поэтому результат умножения h на ν измеряется в единицах энергии — джоулях. В своём описании излучения чёрного тела Планк постулировал, что энергия может изменяться только дискретными шагами. Она может быть равна h∙ν, 2h∙ν, 3h∙ν и т. д., но не может принимать промежуточные значения между этими ступенями. Понимание того, что на атомном уровне энергия меняется дискретными квантами, положило начало квантовой механике.
Эйнштейн предположил, что формула Планка также применима и к фотонам, так что энергия фотона зависит от его частоты ν: E=h∙ν. С помощью этой формулы Эйнштейн объяснил, почему красный свет порождает более медленные электроны, чем голубой. Частота красного света ниже, чем голубого. Поэтому красный фотон менее энергичен, чем голубой. Продолжая аналогию с пулом, мы понимаем, что голубой фотон сильнее толкает электрон, чем красный, и поэтому электрон приобретает более высокую скорость. При таком объяснении становится понятно, почему по мере покраснения света выбиваемые им из металла электроны становятся всё медленнее.
Очень красный свет не выбивает электронов
Остаётся объяснить ещё одно наблюдение: почему электроны перестают вылетать из металла, когда свет становится слишком красным? Эйнштейн ответил и на этот вопрос. Когда электрон выбивается из металла фотоном, у него имеется определённая кинетическая энергия. Кинетическая энергия связана с его движением. Чем выше эта энергия, тем быстрее движется электрон. Она обозначается E>k, где индекс k означает «кинетическая». Кинетическая энергия вычисляется по формуле
E>k=½m∙V>2,
где m — масса, а V — скорость. В таком случае скорость электрона, вылетевшего из металла, связана с его энергией, которая в свою очередь связана с энергией выбившего его фотона. Более энергичный фотон передаст электрону больше кинетической энергии, и электрон будет двигаться быстрее (с большей скоростью V).
Как уже говорилось, электроны удерживаются в металле энергией связи, обозначаемой E>b, где индекс b означает «связывание» (binding). В связи с этим часть энергии, принесённой фотоном, уходит на преодоление энергии связи. Кинетическая энергия, с которой электрон выходит из металла, равна разности энергии фотона E=h∙ν и энергии связи E>b. Таким образом, кинетическая энергия электрона составляет E>k=h∙ν−E>b. Чтобы электрон вылетел из металла, энергия фотона h∙ν должна быть больше энергии связи E>b. По мере того как свет краснеет (длина волны λ увеличивается), частота ν уменьшается, поскольку ν=с/λ, где c — скорость света. При некотором достаточно красном цвете h∙ν становится меньше E>b, и электроны больше не могут вылетать из металла. Повышение интенсивности света увеличивает число фотонов, падающих на металл, но ни один из них не имеет достаточной энергии, чтобы выбить электрон.
Тот факт, что электроны перестают вылетать из металла, когда фотоны уходят достаточно далеко в красную область (имеют достаточно низкую энергию), можно понять на примере детской уличной игры Red Rover
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.