Абсолютный минимум. Как квантовая теория объясняет наш мир - [18]

Шрифт
Интервал

Новое описание фотонов в интерферометре

Вот здесь-то и требуется полное изменение мышления, возвращающее нас к котам Шрёдингера. Как может возникать интерференционная картина, если в каждый момент в интерферометр входит лишь один фотон? Наше понимание этой проблемы и природы квантовой механики в целом основывается на концептуальной интерпретации математического формализма, тесно связанного с работой Макса Борна (1882–1970). Борн получил Нобелевскую премию по физике в 1954 году

«за фундаментальные исследования по квантовой механике, в особенности за статистическую интерпретацию волновой функции».

Эту интерпретацию часто называют копенгагенской.

Корректное описание эксперимента с интерферометром состоит в том, что каждый фотон движется по обоим плечам интерферометра. Это и есть наш большой скачок. Одиночный фотон встречает полупрозрачное зеркало. Значит, с 50-процентной вероятностью фотон отразится и пойдёт по первому плечу интерферометра (см. рис. 5.1), а с 50-процентной вероятностью — по второму плечу. Это ошибка. Когда фотон встречает зеркало — разделитель пучка, — его состояние меняется. Если фотон действительно движется по первому плечу, назовём это состояние движения «трансляционным состоянием 1», сокращённо T>1. Если фотон движется по второму плечу, назовём это состояние движения «трансляционным состоянием 2», сокращённо T>2. После взаимодействия фотона с разделителем пучка он не находится ни в состоянии T>1, ни в состоянии T>2. Состояние системы после разделителя пучка называют состоянием суперпозиции. Это смесь состояний T>1 и T>2 в равных пропорциях. В некотором смысле фотон одновременно находится в состояниях T>1 и T>2. Это звучит по-настоящему странно. Одиночный фотон находится в двух областях пространства одновременно. Он пребывает в трансляционном состоянии T=T>1+T>2 — суперпозиции, в которой поровну смешаны состояния T>1 и T>2.

Фотон находится в этой суперпозиции трансляционных состояний T=T>1+T>2, поскольку именно это о нём известно. Он с 50-процентной вероятностью находится в первом плече (T>1) и с 50-процентной вероятностью — во втором (T>2). Борновская интерпретация волновой функции заключается в том, что это не реальная волна в смысле амплитуды колеблющегося электромагнитного поля. Правильнее говорить, что волновая функция описывает «амплитуду вероятности волны». Ошибочная интерпретация волновой функции в терминах фотонов состоит в том, что она якобы говорит, сколько фотонов находится в каждом плече прибора, то есть сколько фотонов пребывает в некоторой области пространства. Правильная интерпретация состоит в том, что волновая функция фотона говорит о вероятности обнаружения фотона в этой области пространства.

Может показаться, что различие между ошибочной и правильной интерпретациями незначительно, однако, как подробно объясняется далее, оно фундаментально меняет наше представления о природе. В классическом описании света его интенсивность пропорциональна абсолютному значению квадрата амплитуды электрического поля, которая, в свою очередь, задаётся амплитудой волновой функции. В борновской интерпретации возведённая в квадрат абсолютная величина волновой функции для определённой области пространства даёт вероятность обнаружения частицы, в нашем случае фотона, в этой области пространства.

Фотон интерферирует сам с собой

При попадании фотона на разделитель пучка рождаются две волны амплитуды вероятности: одна в первом плече, другая — во втором. В целом волна амплитуды вероятности T является суперпозицией волн амплитуды вероятности T>1 и T>2. Встретившись с разделителем, каждый отдельный фотон попадает в состояние T>1+T>2. Поскольку за разделителем есть две волны амплитуды вероятности, они пересекаются в области перекрытия. С одиночным фотоном внутри интерферометра связаны две волны — T>1 и T>2. Интерференция этих двух волн определяет высокую вероятность обнаружить фотон вблизи пика интерференционной картины и низкую вероятность обнаружить фотон вблизи её нуля. Фотон интерферирует сам с собой, поскольку в интерферометре он состоит из двух волн, и эти две волны могут интерферировать друг с другом. Так как после прохождения разделителя пучка каждый отдельный фотон попадает в состояние суперпозиции T>1+T>2, снимается проблема, связанная с низкой интенсивностью света. Одиночный фотон, входя в прибор, порождает две волновые функции, две волны амплитуды вероятности в интерферометре. Поэтому всегда есть пара волн, порождающих интерференционную картину.

Фотон может находиться в двух местах сразу

Первая естественная реакция человека с классическим мышлением на борновскую интерпретацию: «Это безумие какое-то!» Мы что, действительно верим, будто один фотон может находиться в двух местах сразу? После разделителя пучка порождается состояние T>1+T>2. Это состояние означает, что в некотором смысле фотон одновременно находится в обоих плечах прибора. Если поместить детектор в плечо 1, чтобы посмотреть, сколько там света, то обнаружится, что туда прошла половина света. Однако это не та информация, которая нам нужна. Возможно, половина фотонов пошла по каждому плечу, и мы видим эту половину, или, возможно, имеется 50-процентная вероятность того, что каждый фотон прошёл в каждое плечо. В этом случае мы тоже увидим половинную интенсивность. Правильный эксперимент состоит в использовании настолько слабого света, что в каждый момент внутри прибора находится лишь один фотон.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.