А ну-ка, догадайся! - [5]

Шрифт
Интервал

>Все эти утверждения содержат ссылку на себя. Может быть, в этом причина всех трудностей?



>Нет. Еще древние греки знали, что исключение ссылок на себя не избавляет от парадоксов. Вот один диалог, подтверждающий это.

>Платон. Следующее высказывание Сократа будет ложным.

>Сократ. То, что сказал Платон, истинно.



>Логики упростили парадокс Платона и Сократа, сведя его к двум утверждениям, которые вы видите на рисунке. Какое бы значение истинности вы ни приписали любому из них, оно будет противоречить другому утверждению. Ни одно из утверждений не содержит ссылки на себя, но, взятые вместе, эти два утверждения воспроизводят парадокс лжеца.


Этот вариант парадокса лжеца, широко обсуждавшийся средневековыми логиками, интересен тем, что приводит к важному выводу: источник затруднений в парадоксах с неопределенным значением истинности кроется не в ссылке на себя, а лежит глубже. Если утверждение А истинно, то утверждение В ложно, а коль скоро утверждение В ложно, то утверждение А должно быть ложным. Но если А ложно, то В истинно, а коль скоро В истинно, то А должно быть истинным.

Мы вернулись к исходной позиции и можем все повторить с самого начала, подобно двум полицейским из кинокомедии, крадущимся друг за другом вдоль стен огромного здания. Ни одно из утверждений А и В ничего не говорит о себе, но стоит взять их вместе, как одно утверждение изменяет значение истинности другого утверждения на противоположное, поэтому ни об одном из них мы не можем сказать, истинно оно или ложно.

Своих друзей вы можете развлечь следующим вариантом парадокса Платона и Сократа, предложенным английским математиком П. Э. Б. Журденом, — так называемой карточкой Журдена.

Напишите на одной стороне чистой карточки

УТВЕРЖДЕНИЕ НА ОБРАТНОЙ СТОРОНЕ ЭТОЙ КАРТОЧКИ ИСТИННО

а на обратной стороне —

УТВЕРЖДЕНИЕ НА ОБРАТНОЙ СТОРОНЕ ЭТОЙ КАРТОЧКИ ЛОЖНО.

Многие люди долго вертят в руках карточку Журдена то так, то эдак, прежде чем осознают, что оказались вовлеченными в бесконечный спуск, в котором каждое утверждение попеременно становится то истинным, то ложным.


Алиса и Черный Король


>Парадокс Платона и Сократа включает в себя два бесконечных спуска, подобно парадоксу Алисы и Черного Короля из сказки Льюиса Кэрролла «Алиса в Зазеркалье».

>Алиса. Черный Король мне снится. Но он спит и видит во сне, будто я сплю и вижу во сне, что он спит и видит меня во сне…

>Видно, я никогда не доберусь до конца.


Эпизод, в котором Алиса встречает Черного Короля, происходит в четвертой главе сказки Льюиса Кэрролла «Алиса в Зазеркалье». Король спит и, по словам Твидлди, видит во сне Алису. «Ты ему просто снишься, — говорит Твидлди возмущенной Алисе. — Если этот вот Король вдруг проснется, ты сразу же — фьють! — потухнешь, как свеча!»

Но диалог Алисы и Твидлди снится Алисе. Кто же кому снится: Король Алисе или Алиса Королю?

Что явь и что сон?

Такого рода «сны во сне» приводят к глубоким философским проблемам реальности. «Если бы мы не облекали их в юмористическую форму, — заметил однажды Бертран Рассел, — то нам пришлось бы признать, что они слишком болезненны».

В парадоксе с курицей и яйцом бесконечная последовательность кур и яиц уходит назад по времени, но в парадоксе Алисы и Черного Короля бесконечный спуск совершается по кругу. Наглядной иллюстрацией парадокса бесконечного спуска, совершаемого по кругу, может служить известный рисунок Морица Эшера «Рисующие руки».

Дуглас Хофштадтер в своей книге «Гёдель, Эшер, Бах: вечное золотое переплетение» называет такие парадоксы «странными петлями». В его книге приведено множество поразительных примеров странных петель в физике, математике, изобразительном искусстве, литературе и философии.


Крокодил и младенец


>Греческие философы любили рассказывать притчу о крокодиле, выхватившем младенца из рук матери.

>Крокодил. Съем ли я твоего младенца? Если ты ответишь правильно, я верну тебе его целым и невредимым.



>Мать. О горе мне! Ты съешь моего мальчика.

>Крокодил (в смущении). Как мне поступить? Если я отдам тебе младенца, то твой ответ будет неверным. Следовательно, я должен съесть малютку. Отличная идея! Я не отдам тебе его!

>Мать. Но ты должен вернуть мне его. Ведь если ты съешь моего мальчика, значит, я ответила правильно и ты должен отдать мне его.



>Несчастный крокодил настолько растерялся, что упустил мальчишку. Мать подхватила ненаглядное чадо и была такова.

>Крокодил. Жаль! Вот если бы она сказала, что я отдам ей ребенка, то у меня было бы чем полакомиться на обед.


Крокодил оказался перед неразрешимой проблемой: он должен съесть младенца и в то же время вернуть его матери.

Мать оказалась очень умной женщиной. Ведь если бы она сказала, что крокодил собирается вернуть ей младенца, то крокодил мог бы действительно вернуть его или съесть, не впадая при этом в противоречие.

Если бы крокодил вернул младенца матери, то ее утверждение стало бы истинным и крокодил сдержал бы свое слово. С другой стороны, если крокодил достаточно коварен, то он мог бы съесть младенца. Тогда утверждение матери стало бы ложным, и крокодил мог бы считать себя свободным от данного им обещания вернуть матери младенца.


Еще от автора Мартин Гарднер
Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.


Есть идея!

Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.


Математические чудеса и тайны

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Теория относительности для миллионов

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.


Когда ты была рыбкой, головастиком - я...

      Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.


Обман и чудачества под видом науки

Состояние лженауки на середину двадцатого века с точки зрения науки США  .


Рекомендуем почитать
Математическое мышление

Математика может учить логике только тогда, когда преподавание включает творческий подход к решению интересных задач. Эта книга для тех, кто хочет обучать математике так, чтобы у учеников горели глаза.


Геометрическая рапсодия

Перед читателями проходит история возникновения и развития основных идей геометрии, которые и сегодня приводят к новым взглядам и открытиям в кристаллографии, химии, геологии, генетике, микробиологии, архитектуре, строительстве, технике. Плоское и объемное, свойства кристаллов и правильных тел, симметрия, замкнутость и бесконечность Вселенной — эти темы-мелодии сливаются в книге в некий гимн во славу Геометрии. Для иллюстрирования книги использованы гравюры голландского графика М. К. Эсхера, геометрические по своему содержанию. Научно-художественная книга для широкого круга читателей.


Диалоги о математике

Диалоги о математике, предлагаемые вниманию советских читателей, первоначально опубликованные в некоторых физических и философских журналах, впоследствии составили книжку, изданную на венгерском, немецком, английском и других европейских языках. И статьи и сборник вызвали большой интерес среди широких кругов читателей не только благодаря оригинальной форме изложения, но и вследствие довольно глубокой трактовки методологических вопросов математики. Книгу читали не только математики, физики, биологи, инженеры, но и школьники.


Фрактальная геометрия природы

Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки. Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.


Число, пришедшее с холода. Когда математика становится приключением

Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.