200 знаменитых головоломок мира - [59]
33.
— Клянусь пресвятой Девой! — воскликнул сэр Хьюг. — Если бы кого-нибудь вон из тех молодцов заковали в цепи, чего они воистину заслужили за свои грехи, тогда бы он, быть может, узнал, что длина любой цепочки, состоящей из одинаковых колец, равна внутренней ширине кольца, умноженной на число колец, да еще к этому надо прибавить удвоенную толщину железного прута, из которого сделаны кольца. Можно показать, что внутренняя ширина каждого из колец равна 1 2/3 дюйма, что число колец, выигранных Стивеном Мале, равно 3, а Анри де Турне выиграл 9 колец.
Рыцарь совершенно прав, ибо 1
34.
— Меня здесь спрашивали, — продолжал сэр Хьюг, — как можно найти камеру в Темнице мертвой головы, в которой томилась дева. Будь я проклят, если это так уже трудно! Главное — знать, как приступить к делу. Пытаясь пройти через каждую дверь одни раз и не больше, вы должны заметить, что каждая камера имеет две или четыре двери, за исключением двух, у которых только по три двери. Теперь раскиньте-ка мозгами: вы не можете войти и выйти из какой-то камеры, пройдя через каждую дверь только по одному разу, если число дверей нечетно. Но поскольку таких камер с нечетным числом дверей две, вы с успехом можете пройти весь путь, начав его в одной из этих камер, а закончив в другой. Прошу заметить, что только одна из этих камер внешняя, так что именно из нее следует начинать путь. Тогда совершенно ясно, любезные господа, что благородная дева томилась в другой камере с нечетным числом дверей.
Рисунок делает это совершенно очевидным. Камеры с нечетным числом дверей отмечены звездочками, а пунктиром показан один из многих возможных путей. Совершенно ясно, что вы должны начать путь от нижнеи звездочки, а закончить его в верхней; следовательно, искомая камера расположена над левой глазницей.
35.
— Сказано, что доказать существование пудинга можно лишь с помощью собственных челюстей, и, клянусь зубом святого Георгия, я не знаю, как еще объяснить нужное расположение чисел, если не показать его. Поэтому я здесь и написал числа, сумма которых вдоль каждой из прямых, расположенных на мишени, равна 23.
Мне кажется, что относительно решения де Форти-буса стоит добавить несколько замечаний. Девятнадцать чисел можно расположить таким образом, чтобы сумма вдоль каждой прямой равнялась любому числу от 22 до 38 включительно, кроме 30. В некоторых случаях существует несколько различных решений, но в случае 23 их только два. Я привел одно из них. Чтобы получить другое, поменяйте на рисунке местами 7, 10, 5, 8, 9 соответственно с 13, 4, 17, 2, 15. Также поменяйте местами 18 с 12, а остальные числа оставьте на прежних местах. В каждом случае в центре должно находиться четное число; им может оказаться любое число от 2 до 18. У каждого решения есть дополнительное к нему решение. Таким образом, если вместо каждого числа на приведенном рисунке мы поставим разность между ним и 20, то получим решение для случая 37. Аналогичным образом из расположения на исходном рисунке мы сразу же получим решение для случая 38.
36. Сэр Хьюг весьма озадачил своего главного зодчего, потребовав от него построить окно, у которого каждая сторона равнялась бы одному футу и которое было бы разделено железными прутьями на восемь одинаковых просветов с равными сторонами. На рисунке показано, как это можно сделать. Нетрудно заметить, что стороны окна равны одному футу, а каждая сторона треугольных просветов составляет половину фута.
— По правде говоря, мой добрый зодчий, — сказал лукаво де Фортибус, обращаясь к мастеру, — я не требовал от тебя, чтобы окно было квадратным; совершенно ясно, что оно и не может быть таковым.
37.
— Клянусь пальцами святого Модена, — воскликнул сэр Хьюг де Фортибус, — мой бедный ум никогда не придумывал ничего более искусного и более занимательного. Меня словно озарило, и теперь, по прошествии некоторого времени, я все больше восхищаюсь головоломкой, которая представляется мне все труднее и труднее. Мои господа и родичи, я сейчас покажу вам, как она решается.
Затем достойный рыцарь указал на слегка неправильную форму полумесяца — его два участка от а до b й от с до d представляют собой отрезки прямых, а дуги ас и bd в точности одинаковы. Если сделать разрезы, показанные на рисунке 1, то из четырех получившихся частей (кривые на рисунке 2) можно сложить правильный квадрат. Если теперь этот квадрат разрезать (прямые на рисунке 2), то мы получим 10 частей, из которых можно будет затем сложить симметричный греческий крест, который вы видите на рисунке 3. Пропорции полумесяца и креста на исходном рисунке были указаны правильно, и можно показать, что решение получается абсолютно точное, а не приближенное.
Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
Излагаются практически важные разделы аппарата современной математики, которые используются в инженерном деле: множества, матрицы, графы, логика, вероятности. Теоретический материал иллюстрируется примерами из различных отраслей техники. Предназначена для инженерно-технических работников и может быть полезна студентам ВУЗов соответствующих специальностей.
Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.