200 знаменитых головоломок мира - [61]
44. Вопрос состоял в том, чего больше взял брат Бенджамин: вина из бутылки или воды из кувшина. Оказывается, ни того, ни другого. Вина было перелито из бутылки в кувшин ровно столько же, сколько воды было перелито из кувшина в бутылку. Пусть для определенности бокал содержал четверть пинты. В бутылке была 1 пинта вина, а в кувшине — 1 пинта воды. После первой манипуляции в бутылке содержались 3/4 пинты вина, а в кувшине — 1 пинта воды, смешанная с ¼ пинты вина. Второе действие состояло в том, что удалялась 1/5 содержимого кувшина, то есть 1/5 одной пинты воды, смешанной с 1/5 одной четверти пинты вина. Таким образом, в кувшине были оставлены 4/5 четверти пинты (то есть 1/5 пинты), тогда как из кувшина в бутылку было перелито равное количество (1/5 пинты) воды.
45. В бочонке было 100 пинт вина, и Джон-келарь 30 раз отливал оттуда по пинте, наливая взамен пинту воды. После первого раза в бочонке оставалось 99 пинт вина; после второго раза его оставалось
С помощью упрощенного метода вычислений я удостоверился, что точное количество украденного вина составило
26,0299626611719577269984907683285057747323737647323555652999
пинты. Человек, который вовлек монастырь в вычисление 58-значной дроби, заслуживал сурового наказания.
46. Правильным ответом будет 602 176. Такое число крестоносцев могло образовать квадрат 776 × 776. После того как к отряду присоединился еще один рыцарь, можно было образовать 113 квадратов по 5329 (73 × 73) человек в каждом. Другими словами, 113 х (73)>2— 1 = (776)>2. Это частный случай так называемого уравнения Пелля.
47. Читатель знает, что целые числа бывают простыми и составными. Далее: 1 111 111 не может быть простым числом, ибо если бы оно было таковым, то единственными возможными ответами оказались бы те, что предложил брат Бенджамин и отверг брат Питер. Точно так же оно не может разлагаться в произведение более двух простых сомножителей, ибо тогда решение оказалось бы не единственным. И действительно, 1 111 111 = 239 × 4649 (оба сомножителя простые); поскольку каждая кошка уничтожила больше мышей, чем всего было кошек, то кошек было 239 (см. введение).
В общем случае данная задача состоит в нахождении делителей (если они имеются) чисел вида
Люка в своей книге «Занимательная арифметика» приводит несколько удивительных таблиц, которые он позаимствовал из арифметического трактата под названием «Талкис», принадлежащего арабскому математику и астроному Ибн Албанна, жившему в первой половине XIII века. В Парижской национальной библиотеке имеется несколько манускриптов, посвященных «Талкис», и комментарий Алкаласади, который умер в 1486 г. Среди таблиц, приведенных Люка, есть одна, где перечислены все делители чисел указанного вида вплоть до n = 18. Кажется почти невероятным, что арабы того времени могли найти делители при n = 17, приведенные во введении к настоящей книге. Но Люка утверждает, что они имеются в «Талкис», хотя выдающийся математик читает их по-другому, и мне кажется, что их открыл сам Люка. Это, разумеется, можно было бы проверить, обратившись непосредственно к «Талкис», но во время войны сделать это оказалось невозможно.
Трудности возникают исключительно в тех случаях, когда n — простое число. При n = 2 мы получаем простое число 11. Для n = 3, 5, 11 и 13 делители соответственно равны (3 × 37), (41 × 271), (21 649 × 513 239) и (53 × 79 × 265 371 653). В этой книге я привел уже делители для n = 7 и 17. Делители в случаях n = 19, 23 и 37 неизвестны, если они вообще имеются[32]. При n = 29 делителями будут (3191 × 16 763 × 43 037 × 62 003 × 77 843 × 839 397); при n = 31 одним из делителей будет 2791; при n = 41 два делителя имеют вид (83 × 1231).
Что же касается четных и, то следующая любопытная последовательность сомножителей, несомненно, заинтересует читателя. Числа в скобках — простые.
Или мы можем записать делитель иначе:
В приведенных выше двух таблицах n имеет вид 4m + 2. Когда n имеет вид 4m, делители можно записать следующим образом:
При n = 2 мы получаем простое число 11; при n = 3 делителями будут 3 × 37; при n = 6 они имеют вид 11 × 3 × 37 × 7 × 13; при n = 9 получается 3>2 × 37 × 333 667. Следовательно, мы знаем, что делителями при n = 18 будут 11 × 32 × 37 × 7 × 13 × 333 667, тогда как остающийся множитель — составной и может быть представлен в виде 19 × 52 579. Это показывает, как можно упростить работу в случае составного n.
Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
Книга «Математические головоломки профессора Стюарта» известного математика и популяризатора математической науки Иэна Стюарта – сборник задач, головоломок и увлекательных историй. Повествование в книге основано на приключениях детектива-гения Хемлока Сомса и его верного друга, доктора Джона Ватсапа. Они ломают головы над решением задач с математической подоплекой.Автор уделяет внимание математическим датам, загадкам простых чисел, теоремам, статистике и множеству других интересных вопросов. Эта умная, веселая книга демонстрирует красоту математики.
Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.