200 знаменитых головоломок мира - [21]
60. Под веткой омелы[15]. «На вечере присутствовал один вдовец, — гласит запись, — который пришел позже всех. Это был, несомненно, очень меланхоличный человек, ибо он просидел большую часть вечера в стороне ото всех. Потом мы услышали, что он тайно подсчитывал все поцелуи под веткой омелы. Честно говоря, я бы не потерпела, чтобы меня кто-нибудь так поцеловал, если бы знала, что за нами следит в это время недобрый глаз. Другие девушки, как только что сообщила мне Бетти Марчэнт, были тоже шокированы». Но, видимо, этот меланхоличный вдовец просто собирал материал для своей задачи.
Компания состояла из сквайра, его жены и шести других женатых пар, одного вдовца и трех вдов, двенадцати холостяков и мальчиков и десяти девушек и маленьких девочек. Далее оказалось, что каждый целовал всех остальных со следующими исключениями и дополнениями. Ни одно лицо мужского пола, разумеется, не целовало лиц мужского пола. Никто из женатых мужчин не целовал замужних женщин, за исключением своей собственной жены. Все холостяки и мальчики поцеловали всех девушек и девочек дважды. Вдовец не целовал никого, а вдовы не целовали друг друга. Головоломка состояла в том, чтобы выяснить, сколько поцелуев было совершено под веткой омелы. Предполагалось, что чувство милосердия не позволяло не ответить на каждый поцелуй, такой двойной поцелуй мы считаем за один.
61. Серебряные кубики. Последнюю выдержку из записей найдут, как мне кажется, интересной те читатели, которым предыдущие головоломки показались слишком легкими. Это твердый орешек, раскусить который следует попытаться лишь тем, кто считает, что у него крепкие интеллектуальные зубы.
«Учитель Герберт Спиринг, сын одной вдовы из нашего прихода, предложил простую с виду арифметическую головоломку, однако никто из присутствующих решить ее не сумел. По правде говоря, сама я даже и не пыталась это сделать после того, как студент из Оксфорда, очень образованный и сведущий в математике молодой человек, не сумел на нее ответить. Он уверял нас, что считает задачу вообще неразрешимой, но мне сказали, что решить ее все же можно, хотя я и не поручусь за это. Учитель Герберт принес два литых кубика из серебра, принадлежавших его матери. Он показал, что поскольку в любом направлении они имеют в длину 2 дюйма, то в каждом содержится по 8 кубических дюймов, а в обоих кубиках — 16 кубических дюймов серебра. Он хотел узнать, сможет ли кто-нибудь привести точные размеры двух кубиков, содержащих вместе 17 кубических дюймов серебра?» Разумеется, эти новые кубики должны иметь разные размеры.
Идея рождественского головоломного вечера, провозглашенная старым сквайром, кажется, была превосходной, ее можно было бы в наше время и возродить. Люди порой устают от «книжных» чаев и подобных им нововведений, которые служат для развлечения гостей на вечерах. Тех, кто лучше всего справится с предложенными головоломками, следует награждать призами.
ПРОИСШЕСТВИЯ В КЛУБЕ ГОЛОВОЛОМОК
Когда недавно стало известно, что интригующая тайна принца и пропавшего воздушного шара была разгадана членами Клуба головоломок, оказалось, что широкая публика совершенно не подозревала о существовании такой организации. Члены клуба всегда старались избегать гласности. Но с тех пор, как в связи с этим исключительным случаем они оказались в центре всеобщего внимания, о их деятельности стало ходить столько невероятных слухов, что я счел своим долгом опубликовать правдивый отчет о некоторых из их наиболее интересных достижений. Было решено, однако, не упоминать истинных имен членов клуба.
Клуб был образован несколько лет назад, дабы объединить людей, интересующихся решением всевозможных головоломок. В него вошли не только отдельные выдающиеся математики, но и наиболее острые умы Лондона. Они выполнили ряд блестящих работ, посвященных высоким и рафинированным материям. Однако большая часть членов клуба занялась изучением то и дело возникающих задач из повседневной жизни.
Будет уместным сказать, что их не интересовали преступления как таковые, а привлекали лишь случаи, которые позволяли поломать голову над их решением. Они искали предмет для размышлений ради самих размышлений. Если даже какие-либо обстоятельства и не имели ни для кого значения, но вкупе составляли головоломку, этого было достаточно.
62. Двусмысленная фотография. Хорошим примером наиболее легкого типа задач, которые приходилось решать членам Клуба головоломок, явилась задача, известная как «Двусмысленная фотография». Хотя она может озадачить неискушенного, но в клубе на нее смотрели как на нечто в высшей степени тривиальное. И все же она поможет лучше представить себе этих людей острого ума.
Оригинальная фотография висела на стене клуба, вызывая недоумение гостей, которые ее рассматривали. И все же любому ребенку было по силам разгадать таящуюся в ней загадку. Я дам читателю возможность испробовать остроту собственного ума.
Несколько членов клуба сидели однажды вечером в помещении клуба в Аделфи. Среди них находились Генри Мелвил, не перегруженный делами адвокат, который обсуждал какую-то задачу с Эрнстом Расселом, бородатым человеком средних лет, занимавшим необременительный пост в Сомерсет-Хаузе (он слыл главным спорщиком и одним из наиболее тонких умов клуба); Фред Уилсен, весьма жизнерадостный журналист, обладавший большими способностями, чем это казалось на первый взгляд; Джон Макдональд, шотландец, который поставил рекорд, не решив со дня основания клуба самостоятельно ни одной головоломки, хотя он нередко наводил других на верный путь; Тим Чертой, банковский клерк, которого переполняли эксцентричные идеи вроде изобретения вечного двигателя; наконец, Гарольд Томкинс, процветающий бухгалтер, хорошо знакомый со столь элегантной областью математики, как теория чисел.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.
Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.