200 знаменитых головоломок мира - [20]
На Рождество дом в Стоук Коурси-Холле был всегда открыт для гостей, ибо если и было что-то, чему сквайр Дэвидж уделял особое внимание, так это то, чтобы рождественские праздники проходили по-королевски.
— Послушайте-ка, ребята, — говаривал он своим сыновьям, — для нашей страны наступят плохие времена, если мы когда-либо станем относиться безразлично к этим праздникам, которые помогают нам оправдывать гордое имя Веселой Англии.
Поэтому, когда я говорю, что Рождество в Стоук Коурси-Холле праздновалось в добром старом веселом духе, который так любили наши деды и прадеды, то мне следовало бы попытаться их описать. Правдивую картину этих веселых сцен мы имеем в «Брейсбридж-Холл» Вашингтона Ирвинга. Я же хочу обратить ваше внимание на одну характерную черту этих увеселений.
Сквайр проявлял особый интерес, что говорит о нем как о человеке развитом, ко всякого рода головоломкам, и один из вечеров всегда был посвящен этому славному увеселению. Предполагалось, что каждый гость придет на него, вооруженный какой-нибудь загадкой или головоломкой на удивление и, быть может, на радость всей компании. Старый джентльмен всегда дарил гостю, наиболее искусному в своих ответах, новые часы. Жаль, что до нас не дошли все головоломки этих вечеров, однако я хочу предложить читателям некоторые из них. Они сохранились в памяти у ныне здравствующих членов этой семьи, которые любезно позволили мне ими воспользоваться. Есть среди них очень простые, есть довольно трудные, а одна из них представляет собой весьма твердый орешек, так что каждый найдет себе здесь что-нибудь по вкусу.
Краткая запись этих головоломок была сделана аккуратным угловатым почерком, принадлежавшим руке одной юной леди тех времен, и головоломки, условия которых для большей ясности я излагаю своими собственными словами, по-видимому, все были предложены на одном вечере.
55. Три чайные чашки. Одна юная леди — про которую наши исторические записи сообщают с восхитительной невинностью: «Эта мисс Чарити Локайер впоследствии вышла замуж за помощника приходского священника из Таунтон-Вейла» — поставила на стол три пустые чайные чашки и предложила желающему положить в них десять кусков сахару так, чтобы в каждой чашке оказалось нечетное число кусков. «Один молодой человек, изучавший право в Оксфорде, с жаром заявил, что этого, безусловно, сделать нельзя и что он готов привести всей компании доказательство этого утверждения». Наверное, было очень интересно взглянуть на его лицо, когда мисс Чарити показала ему правильный ответ.
56. Одиннадцать монет. Один из гостей попросил кого-нибудь одолжить ему одиннадцать пенни и разложил их у всех на глазах на столе. Запись гласит: «Затем он попросил нас удалить пять монет из одиннадцати и добавить четыре Так, чтобы получилось девять монет. Мы все считали, что должно получиться десять пенни. Каково же было наше удивление, когда мы узнали ответ».
57. Рождественские гуси. Сквайр Хемброу из Вестон Зоуайлэнда (где бы ни находилось это место) предложил следующую небольшую арифметическую головоломку, от которой, вероятно, произошли некоторые современные головоломки.
Фермер Роуз послал своего работника на рынок со стадом гусей, сказав ему, что он может продать всех гусей или только часть из них, как ему покажется лучшим, ибо он знал, что его работник поднаторел в делах торговли. Вот отчет Джейбза (я постарался очистить его от старого сомерсетского диалекта, который мог бы озадачить некоторых читателей):
«Ну так вот, сперва я продал мистеру Джесперу Тайлеру полстада и полгуся сверх того; потом я продал фермеру Эйвенту треть того, что осталось, да еще треть гуся; затем я продал вдове Фостер четверть остатка и еще три четверти гуся; а когда я возвращался домой, то кого бы вы думали я встретил, если не Нэда Кольера. Мы распили вместе кружку сидра в Барли Моу, где я и продал ему ровно пятую часть того, что оставалось, да еще подарил пятую часть гуся. Тех девятнадцати гусей, что я привез назад, мне не удалось сбыть ни за какую цену».
Сколько гусей фермер Роуз послал на рынок? Мои гуманные читатели могут успокоиться, узнав, что при всех сделках ни один гусь не разрезался на части и вообще птицам не причинялось никаких увечий.
58. Номера. «Мы очень смеялись над одной милой шуткой майора Тренчарда, веселого приятеля сквайра. Он написал кусочком мела номера на спинах восьми мальчиков, бывших на вечере». Затем он разделил ребят на две группы, как показано на рисунке: на одной стороне номера 1, 2, 3, 4, а на другой — 5, 7, 8, 9. Можно заметить, что сумма номеров в левой группе равна 10, а в правой — 29. Головоломка майора состояла в том, чтобы разбить мальчиков на две новых группы так, чтобы суммы номеров в каждой группе были одинаковы. Племянница сквайра спросила, не стоит ли 6 вместо 5, но майор объяснил, что числа написаны верно, если на них правильно смотреть.
59. Сливовые пудинги. «Каждый, я думаю, хорошо знает, что сколько рождественских сливовых пудингов он попробует, столько счастливых дней будет у него в новом году. Один из гостей (его имени я не запомнила) принес лист бумаги, на котором были нарисованы 64 пудинга, и предложил нам показать, как можно попробовать эти пудинги с наибольшей быстротой». Я не вполне понимаю эту прихотливую и довольно путаную запись головоломки. По-видимому, пудинги были расположены в правильном порядке, как на рисунке, и коснуться пудинга — это значит показать, что вы его попробовали. Вы должны просто поставить кончик карандаша на украшенный веточкой остролиста пудинг в верхнем углу и коснуться центров всех 64 пудингов, проведя 21 прямую. Вы можете двигаться вверх, вниз, по горизонтали, но не по диагонали и не по косой. Вы не должны касаться одного пудинга дважды, ибо это означало бы, что вы два раза отведали это лакомство, и так не безразличное для желудка. Особое обстоятельство заключается в том, что вы должны отведать дымящийся пудинг в конце вашего десятого прямолинейного прохода, а пудинг, расположенный внизу и украшенный остролистом, следует попробовать последним.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.
Задача этой книги — опровергнуть миф о том, что мир математики скучен и скуп на интересные рассказы. Автор готов убедить читателей в обратном: история математики, начиная с античности и заканчивая современностью, изобилует анекдотами — смешными, поучительными и иногда печальными. Каждая глава данной книги посвящена определенной теме (числам, геометрии, статистике, математическому анализу и так далее) и связанным с ней любопытным ситуациям. Это издание поможет вам отдохнуть от серьезных математических категорий и узнать чуть больше о жизни самих ученых.
В этой книге пойдет речь об этноматематике, то есть об особенностях методов счисления, присущих разным народам. Хотя история современной математики — часть европейского культурного наследия, опирается она на неакадемические пласты, существовавшие задолго до возникновения современной культуры. Этноматематика охватывает весь перечень математических инструментов, созданных разными народами для решения определенных задач. Конечно, она далека от знакомой нам академической науки и, скорее, опирается на практический опыт, а потому вдвойне интересна.
Поиск простых чисел — одна из самых парадоксальных проблем математики. Ученые пытались решить ее на протяжении нескольких тысячелетий, но, обрастая новыми версиями и гипотезами, эта загадка по-прежнему остается неразгаданной. Появление простых чисел не подчинено какой-либо системе: они возникают в ряду натуральных чисел самопроизвольно, игнорируя все попытки математиков выявить закономерности в их последовательности. Эта книга позволит читателю проследить эволюцию научных представлений с древнейших времен до наших дней и познакомит с самыми любопытными теориями поиска простых чисел.
Большинство из нас испытывает головокружение, думая о бесконечности: ее невозможно себе представить!Быть может, именно поэтому она является неисчерпаемым источником вдохновения. В погоне за бесконечностью ученым пришлось петлять между догмами и парадоксами, вступать на территорию греческой философии, разбираться в хитросплетениях религиозных измышлений и секретов тайных обществ.Но сегодня в математике бесконечность перестала быть чем-то неясным и превратилась в полноценный математический объект, подобный числам и геометрическим фигурам.
Хаос буквально окружает нас. Солнечная система, популяции животных, атмосферные вихри, химические реакции, сигналы головного мозга и финансовые рынки — вот лишь некоторые примеры хаотических систем. Но по-настоящему удивительно то, что хаотическими могут быть простые системы, например двойной маятник. Очередной том из серии «Мир математики» рассказывает о хаосе, то есть о беспорядочном и непредсказуемом поведении некоторых динамических систем, а также о связи теории хаоса с глобальным изменением климата.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.