100 миллиардов солнц: Рождение, жизнь и смерть звезд - [26]
Новая модель Солнца тоже показывает нам, где освобождается энергия ядерных реакций и сколько водорода превращается в гелий за каждую секунду. И снова мы можем определить химический состав звезды еще через один миллион лет. Для этого нового химического состава вновь можно построить модель внутренней структуры Солнца.
Так мы можем последовательно переходить от одной модели Солнца к целому ряду других. Поскольку в результате каждого расчета мы можем определить температуру поверхности и светимость, то каждую из этих моделей можно изобразить точкой на диаграмме Г-Р. На этой диаграмме появляется цепочка точек, начало которой совпадает с «молодым» Солнцем. Эта последовательность точек описывает, как перемещается Солнце по диаграмме Г-Р в ходе своего развития. Мы определили таким образом путь развития Солнца.[12] Он показан на рис. 5.1. На некоторых участках этой траектории отмечено время, прошедшее с момента «зажигания» водорода в недрах Солнца.
Рис. 5.1. Путь развития Солнца на диаграмме Г-Р. Он начинается от «молодого» Солнца, проходит через точку, которая соответствует современному Солнцу, а затем уходит в сторону от «молодой» главной последовательности в область красных гигантов. На рисунке обозначено время, прошедшее с момента начала ядерной реакции превращения водорода в гелий в недрах «молодого» Солнца.
Путь развития нашего модельного Солнца проходит через точку на диаграмме, которая соответствует нынешнему времени. Теперь мы хорошо видим, что, как уже отмечалось выше, различие в свойствах между «молодым» Солнцем и современным Солнцем связано с постепенной временной эволюцией нашей звезды. Если учесть обогащение гелием центральной зоны Солнца, то свойства, которые предсказываются моделью, будут в точности совпадать с наблюдаемыми. Это обстоятельство укрепляет нашу уверенность в том, что расчеты свойств Солнца правильны. Расчеты позволили нам определить и возраст нашего Солнца. Между «молодым» Солнцем на диаграмме и Солнцем в настоящее время прошло 4,5 миллиарда лет. Таков возраст нашего Солнца. За это время из «молодого» Солнца образовалось нынешнее Солнце. Прежде чем говорить о будущем, остановимся еще на некоторых свойствах современного Солнца.
Воспользуемся возможностями, которые предоставляет нам наша компьютерная модель, и заглянем внутрь Солнца. На рис. 5.2, б представлена наша модель современного Солнца. Мы хотим сравнить ее со структурой «молодого» Солнца, показанной на рис. 4.2. Они не слишком отличаются друг от друга. Здесь и там мы видим конвективный внешний слой, в то время как в более глубокой области энергия переносится от внутренних слоев к внешним с помощью излучения. Превращение водорода в гелий происходит в реакциях протон-протонной цепочки. Современное Солнце отличается от молодого только тем, что в его центральной области содержится некоторое количество гелия, возникшего в результате ядерных реакций. В то время как во внешних слоях на килограмм вещества приходится 270 граммов гелия, в центральных областях содержание достигает 590 граммов. Примерно 300 граммов на килограмм массы образовалось в результате сгорания водорода. Во внешнем слое солнечное вещество постоянно перемешивается. Каждый грамм вещества, достигший внешней поверхности, за некоторое время до этого находился в нижней части конвективного слоя, где температура вещества составляет около одного миллиона градусов. Это примерно в 170 раз выше температуры внешней поверхности. Мы видим, что конвективная зона распространяется с поверхности до очень горячих внутренних областей. Это обстоятельство имеет важные следствия, на которых мы остановимся ниже.
Рис. 5.2. Внутреннее строение Солнца, полученное с помощью компьютерной модели, на разных стадиях его развития. Обозначения те же, что и на рис. 4.2. В отличие от этого рисунка теперь показаны области, обогащенные гелием. Они символически изображены с помощью кружков. Исходное вещество, богатое водородом, показано точками. С течением времени в центральной области Солнца становится все больше гелия, а сама эта область расширяется. Слева показаны изображения звезд в одинаковом масштабе (однако этот масштаб не совпадает с масштабом рисунков в левой части рис. 4.2). Справа от них показаны в увеличенном размере внутренние области, приведен масштаб увеличения: а — «молодое» Солнце, б — современное Солнце. В центре звезды, показанной на рис. в, уже есть сфера, целиком занятая гелием, который возник в результате горения водорода. Ядерная реакция превращения водорода в гелий происходит теперь в тонком слое, который окружает гелиевую сферу. На рис. г показано Солнце на стадии красного гиганта. Хорошо видны толстая внешняя конвективная зона и относительно малое внутреннее гелиевое ядро, размеры которого близки к диаметру белого карлика. Белый карлик изображен для сравнения справа внизу в масштабе, увеличенном в 100 раз по сравнению с изображением центральной части звезды на рис. г.
Почему на Солнце нет дейтерия?
Ядро атома дейтерия, одного из изотопов водорода, состоит из протона и нейтрона. Дейтерий не может существовать при высоких температурах, которые наблюдаются в недрах звезд. Уже при температуре 500 000 градусов ядра дейтерия могут взаимодействовать с ядрами водорода. В результате такой реакции образуется изотоп гелия. Дейтерий встречается в природе в небольших количествах: его можно найти, например, в межзвездном веществе, из которого образовались все звезды. При рождении Солнца дейтерий тоже должен был войти в его состав, поскольку следы этого изотопа водорода наблюдаются и на Земле. Так, например, в океанской воде на каждые 5000 обычных атомов водорода встречается один атом дейтерия.
14 июля 2015 г. произошло удивительное событие. Более чем в 4,8 млрд км от Земли маленький космический аппарат NASA под названием «Новые горизонты» промчался мимо Плутона со скоростью более 50 000 км/ч, направив все свои приборы на таинственные ледяные миры, а затем продолжил путешествие к дальним пределам Солнечной системы. Ничего подобного не случалось на памяти целого поколения — исследований новых миров не было со времен полетов «Вояджеров» к Урану и Нептуну, — и ничего похожего на это не планировалось в будущем.
В популярной форме изложены последние данные по геологии Луны, Марса, Венеры; описаны материки и океаны на этих космических телах, процессы оледенения, пыльные бури, гигантские трещины и т. д. Подчеркивается, что знание геологии других планет помогает исследователю разобраться в некоторых сложных проблемах геологического развития Земли, особенно ее ранних стадий.
Летчик-космонавт СССР, командир космического корабля «Союз-6» рассказывает о том, как создавался первый отряд космонавтов, о сложном и требовательном отборе, через который пришлось пройти каждому, но далеко не каждому удалось успешно выдержать все испытания и слетать в космос. О судьбах этих людей откровенно и глубоко повествует книга. Читатели узнают интересные подробности о полетах первых советских космонавтов. Книга посвящается пятнадцатилетию первого старта человека в космос.
Американский астронавт Скотт Келли совершил четыре полета в космос, дважды был членом многодневной американской миссии на Международной космической станции и провел на орбите в общей сложности более 500 суток. О его необычайном опыте много писали в прессе, а теперь есть возможность узнать подробности от него самого. Искренний рассказ о себе, своем детстве, взрослении рисует точный психологический портрет человека, выбирающего путь астронавта, помогает увидеть бесстрашных героев с необычного ракурса и лучше понять их мотивацию и личностные особенности.
В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.