100 миллиардов солнц: Рождение, жизнь и смерть звезд - [24]
Во всех звездах, масса которых во много раз превышает массу Солнца, перенос энергии во внутренних областях происходит путем конвекции, как мы показали на примере Спики. Это хорошо видно из приведенной на рис. 4.2, в модели звезды, масса которой превышает солнечную в 72 раза. Отметим, что с возрастанием массы звезд главной последовательности увеличивается и их диаметр.
Выше мы уже обсуждали модель для молодого Солнца. Рассмотрим теперь звезду, масса которой существенно меньше солнечной.
Красный карлик в созвездии Лебедя
В созвездии Лебедя (по латыни Cygnus) есть звезда, хорошо знакомая всем астрономам: 61 Лебедя. Она стала известной, когда Фридрих-Вильгельм Бессель в 1837–1838 гг. впервые [11] опробовал на ней свой новый метод определения расстояний (см. приложение Б). Имя Фридриха-Вильгельма Бесселя уже известно нам из истории открытий спутника Сириуса.
Звезда 61 Лебедя в действительности представляет собой двойную систему: две звезды с массой 0,5 и 0,6 солнечной движутся с периодом 720 лет вокруг общего центра масс. Нас интересует более тяжелая из этих звезд, 61 Лебедя А. Эта звезда принадлежит к главной последовательности, температура ее поверхности составляет 4000 градусов. Она меньше и существенно холоднее Солнца, и поэтому принадлежит к числу красных звезд: представляет собой так называемый красный карлик.
Если построить с помощью вычислительной машины модель звезды с массой 0,6 солнечной, то мы получим для этой звезды примерно такие же свойства, как у звезды 61 Лебедя А. Наша модельная звезда будет расположена примерно в том же месте на диаграмме Г-Р. Как выглядит внутреннее строение красного карлика? Оно схематически изображено на рис. 4.2, г. Температура в центре составляет всего около 8 миллионов градусов. Все ядерные реакции принадлежат к протон-протонной цепочке. Плотность в центральной части звезды составляет 65 граммов на кубический сантиметр. Таким образом, плотность в центре красного карлика меньше плотности вещества в центре Солнца. Давление составляет около 75 миллиардов атмосфер и примерно равно давлению в центре Спики. Перенос энергии во внутреннем объеме звезды происходит путем излучения. Во внешних слоях наблюдается конвекция, как на Солнце, однако толщина конвективного слоя существенно больше. Толстый внешний конвективный слой характерен для красных звезд.
Чем ниже мы будем опускаться по главной последовательности, переходя ко все более холодным и красным карликам, тем толще будет внешняя конвективная зона звезд. Если масса звезды составляет всего одну десятую массы Солнца, то все ее вещество от поверхности до центра находится в конвективном движении.
Свойства «молодой» главной последовательности
Теперь мы в основных чертах понимаем свойства звезд главной последовательности. Нам известно, что к главной последовательности принадлежит более 90 % всех звезд. Мы уже установили, что все эти звезды существуют за счет превращения водорода в гелий. Свойства атомов водорода определяют количество выделяющейся энергии, а, следовательно, и наблюдаемые свойства звезд главной последовательности. Если говорить о цвете и яркости звезд, т. е. о свойствах, которые мы можем наблюдать невооруженным глазом, то можно с уверенностью сказать, что эти звезды наглядно демонстрируют нам на небе свойства атомов водорода. Если бы атомы водорода обладали другими свойствами, то и звезды выглядели бы иначе.
Где расположены границы главной последовательности? Можно ли, взяв любое количество богатого водородом вещества подходящего состава, построить из него звезду, которая будет светить за счет превращения водорода в гелий? Допускают ли это законы природы? Как далеко простирается главная последовательность в сторону малых масс? Будет ли функционировать звезда, масса которой не превышает массу человека?
Если мы будем с помощью компьютера, начав со звезды, близкой по размерам к Солнцу, переходить ко все более легким звездам, то температура центральных областей наших звезд будет постепенно понижаться. Реакции протон-протонной цепочки скоро не будут доходить до конца. Эта цепочка обрывается на слиянии двух ядер Не>3. Таким образом, превращение водорода в Не>4 становится невозможным. Если мы опустимся примерно до восьми сотых массы Солнца, то в таких звездах уже не может происходить превращение водорода в гелий. Температура в недрах столь малых звезд недостаточно велика, чтобы могли сливаться друг с другом ядра водорода. Таким образом, главная последовательность звезд, которые светят за счет превращения водорода в гелий, опускается немного ниже одной десятой массы Солнца. Здесь она заканчивается. Если потребовать от компьютера, чтобы он построил модель для звезды с меньшей массой, в которой сгорает водород, то он откажется это сделать. Если бы я захотел в гигантском эксперименте построить звезду с массой в одну тысячную массы Солнца, то в лучшем случае получилось бы небесное тело, напоминающее по свойствам планету. И никогда не удалось бы образовать мини-звезду, светящуюся за счет ядерных реакций с участием водорода.
Очерки о путях познания Вселенной. В увлекательной, доходчивой форме с широким привлечением исторического материала рассказывается о достижениях современной астрономии и космонавтики, о методах астрономических исследований, о тесных связях астрономии с механикой, математикой, физикой, науками о Земле. Большое место уделяется научным данным, полученным благодаря прогрессу ракетно-космической техники. История астрономии прослеживается в связи с общим развитием научного творчества в различные исторические эпохи.
В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.
В детстве Майкл Массимино по прозвищу Масса мечтал стать Человеком-пауком, но в июле 1969 года он вместе со всем миром увидел, как прогуливаются по Луне Нил Армстронг и Базз Олдрин, и навсегда заболел мечтой о полете к звездам. На этом пути его поджидали препятствия, казавшиеся непреодолимыми: Майкл страдал страхом высоты, у него было плохое зрение, он проваливал важные экзамены. Однако упорство и верность мечте сделали свое дело: он не только сумел стать уникальным специалистом в области практической космонавтики, разработав программное обеспечение для роботизированного манипулятора, но и сам дважды слетал на орбиту, приняв участие в миссиях по ремонту телескопа «Хаббл».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.