100 миллиардов солнц: Рождение, жизнь и смерть звезд - [28]
В послевоенные годы в группе Шварцшильда в Принстонском университете была начата работа по конструированию моделей строения звезд главной последовательности. Сотрудники Шварцшильда попытались изучить, что происходит со звездами, когда в их недрах кончается водород и прекращается ядерная реакция образования гелия. В 1955 г. была успешно закончена большая работа, в которой впервые удалось рассчитать, как звезды главной последовательности постепенно превращаются в красные гиганты.
В те годы астрофизики впервые начали широко применять в своих расчетах вычислительные машины. Хойлу и Шварцшильду нужен был компьютер, чтобы смоделировать процесс развития звезд. Немного позже и у меня возникла такая необходимость.
Осенью 1957 г. мы со Штефаном Темешвари (1915–1984) ночами просиживали на Беттингерштрассе в Гёттингене у вычислительной машины G2. Так назывался компьютер, сконструированный и собранный Хайнцем Биллингом и его сотрудниками в Физическом институте им. Макса Планка. В те времена вычислительную машину еще нельзя было просто купить в магазине, научные сотрудники сами изготовляли компьютеры. Сегодня обычный настольный компьютер очень часто обладает более широкими возможностями, чем любая машина, которая в те времена занимала целую комнату и работала на лампах. Людвиг Бирман, который в то время руководил астрофизическим отделением института, предложил нам с помощью этой машины решить уравнения Хойла и Шварцшильда. При этом мы должны были использовать придуманный нами улучшенный способ расчета.
Если вспомнить, как мы тогда работали, и сравнить с сегодняшними методами исследований, то станет ясно, какие произошли огромные изменения. Чтобы получить модель внутреннего строения звезды, надо было задать пробные значения светимости и температуры поверхности, а затем шаг за шагом двигаться от внешних слоев звезды ко внутренним. Когда расчет подходил к центру звезды, требовалось проверить, имеют ли наши решения смысл, или, говоря на языке математики, отвечают ли они внутренним граничным условиям. После этого надо было повторять весь расчет снова, используя улучшенные значения для светимости и температуры поверхности и надеясь, что на этот раз внутренние граничные условия будут удовлетворяться лучше. Интегрирование от поверхности к центру звезды необходимо было многократно повторять до тех пор, пока не получалось разумное решение. Чтобы получить каждое решение, мы совершали целое «путешествие» к центру звезды. Оно продолжалось пять часов, и можно было только надеяться, что вычислительная машина будет работать все это время без ошибок. Иначе приходилось все начинать сначала. Сегодня вычислительная машина того же института (которая, кстати сказать, установлена в Мюнхене) получает окончательное решение в течение нескольких секунд. Такая скорость решения задачи объясняется не только появлением новых мощных компьютеров, это прежде всего заслуга группы исследователей из Беркли.
Об их работах речь пойдет в следующей главе. А мы пока посмотрим, что происходит со звездами главной последовательности, когда в них начинает выгорать водород. Такая же судьба ожидает и наше Солнце, а ведь от него зависит и будущее жизни на нашей планете.
Что произойдет в будущем с нашим Солнцем?
Что же будет дальше? Что произойдет, когда все больше водорода будет выгорать и в центре Солнца будет накапливаться гелий? Модельные расчеты показывают прежде всего, что в ближайшие 5 миллиардов лет практически ничего не изменится. Солнце будет медленно (как показано на рис. 5.1) перемещаться вверх по своему пути развития на диаграмме Г — Р. Светимость Солнца при этом будет постепенно повышаться, а температура на его поверхности вначале станет чуть выше, а затем начнет медленно снижаться. Но все эти изменения будут невелики.
Через 10 миллиардов лет после начала горения водорода светимость Солнца будет всего в два раза выше нынешней. К этому времени человечество (если оно еще будет существовать на Земле) уже давно начнет испытывать климатические трудности. Однако потом станет еще хуже. А пока диаметр Солнца всего в два раза превышает нынешний.
Между тем, в недрах Солнца к этому времени уже произойдут существенные изменения. В центре весь водород уже будет исчерпан. Центральная область целиком заполнена гелием (см. рис. 5.2, в). На этом рисунке изображена модель Солнца в возрасте 12 миллиардов лет. В центре не происходит ядерных реакций, поскольку весь водород уже выгорел, а для превращения гелия в углерод (см. рис. 3.4) температура слишком мала. Только на поверхности этого гелиевого шара, там, где гелий граничит со слоем, богатым водородом, еще происходит сгорание водорода. Постепенно выгорает и этот водород, а радиус гелиевой сферы в центре Солнца увеличивается. Если вначале у нашего Солнца было ядро, где происходили ядерные реакции превращения водорода в гелий, то теперь горение водорода происходит в тонкой сферической оболочке, которая постепенно расширяется и перемещается во внешние области, все еще богатые водородом. С течением времени диаметр гелиевого шара в центре Солнца становится все больше. На диаграмме Г-Р Солнце перемещается направо вверх, в область красных гигантов (как показано на
14 июля 2015 г. произошло удивительное событие. Более чем в 4,8 млрд км от Земли маленький космический аппарат NASA под названием «Новые горизонты» промчался мимо Плутона со скоростью более 50 000 км/ч, направив все свои приборы на таинственные ледяные миры, а затем продолжил путешествие к дальним пределам Солнечной системы. Ничего подобного не случалось на памяти целого поколения — исследований новых миров не было со времен полетов «Вояджеров» к Урану и Нептуну, — и ничего похожего на это не планировалось в будущем.
В популярной форме изложены последние данные по геологии Луны, Марса, Венеры; описаны материки и океаны на этих космических телах, процессы оледенения, пыльные бури, гигантские трещины и т. д. Подчеркивается, что знание геологии других планет помогает исследователю разобраться в некоторых сложных проблемах геологического развития Земли, особенно ее ранних стадий.
Летчик-космонавт СССР, командир космического корабля «Союз-6» рассказывает о том, как создавался первый отряд космонавтов, о сложном и требовательном отборе, через который пришлось пройти каждому, но далеко не каждому удалось успешно выдержать все испытания и слетать в космос. О судьбах этих людей откровенно и глубоко повествует книга. Читатели узнают интересные подробности о полетах первых советских космонавтов. Книга посвящается пятнадцатилетию первого старта человека в космос.
Американский астронавт Скотт Келли совершил четыре полета в космос, дважды был членом многодневной американской миссии на Международной космической станции и провел на орбите в общей сложности более 500 суток. О его необычайном опыте много писали в прессе, а теперь есть возможность узнать подробности от него самого. Искренний рассказ о себе, своем детстве, взрослении рисует точный психологический портрет человека, выбирающего путь астронавта, помогает увидеть бесстрашных героев с необычного ракурса и лучше понять их мотивацию и личностные особенности.
В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.