100 миллиардов солнц: Рождение, жизнь и смерть звезд - [18]

Шрифт
Интервал

присоединится еще один протон, тогда из образовавшегося ядра вылетают вместе два протона и два нейтрона, которые образуют ядро гелия. Тяжелое ядро вновь превращается в исходное ядро углерода. Круг замкнулся.

Рис. 3.2. Превращение водорода в гелий в углеродном цикле реакций. Обозначения элементарных частиц такие же, как на рис. 3.1. Красные волнистые стрелки показывают, что атом испускает квант электромагнитного излучения. Символом е>+ обозначены позитроны, ν-нейтрино.

В результате четыре протона объединяются и образуют ядро гелия: водород превращается в гелий. В ходе этого процесса освобождается энергия, которой достаточно для того, чтобы звезды могли светить миллиарды лет. Разогрев звездного вещества происходит не на всех этапах рассмотренной нами цепочки реакций. Звездное вещество разогревается частично за счет квантов электромагнитного излучения, которые передают свою энергию звездному газу, а частично за счет позитронов, которые почти сразу же аннигилируют со свободными электронами звездного газа. При аннигиляции позитронов и электронов тоже образуются кванты электромагнитного излучения. Энергия этих квантов передается звездному веществу. Небольшая часть выделяющейся энергии уносится из звезды вместе с вылетающими нейтрино. О некоторых непонятных вопросах, связанных с нейтрино, речь пойдет в гл. 5.

В 1967 г. Бете была присуждена Нобелевская премия по физике за открытие углеродного цикла, которое было сделано им в 1938 г. вместе с фон Вайцзеккером. В этом случае Нобелевский комитет, по всей видимости, забыл, что честь этого открытия принадлежит не одному Бете.

Мы знаем, что такое циклическое превращение происходит в присутствии элементов-катализаторов: углерода и азота. Но в звездных недрах не обязательно должны присутствовать все три элемента. Вполне достаточно и одного из них. Если начнется хотя бы одна реакция цикла, то элементы-катализаторы возникнут в результате последующих этапов реакций. Более того, протекание циклической реакции приводит к тому, что возникает вполне определенное количественное соотношение между необходимыми изотопами. Это количественное соотношение зависит от температуры, при которой протекает цикл. Астрофизики могут в настоящее время с помощью своих спектроскопических методов провести достаточно точный количественный анализ космического вещества. По соотношению между количеством изотопов С>12, С>13, N>14 и N>15 часто можно не только установить, что в звездных недрах идет превращение вещества по углеродному циклу, но и при какой температуре происходят эти реакции. Однако водород может превращаться в гелий не только за счет углеродного цикла. Наряду с реакциями углеродного цикла происходят и другие, более простые превращения. Они-то и вносят основной вклад (по крайней мере на Солнце) в выделение энергии. Перейдем к рассмотрению этих реакций.

Протон-протонная цепочка

Для осуществления цикла реакций с участием углерода, о которых шла речь в предыдущем разделе, требуется некоторое количество углерода или азота. При этом сами атомы углерода или азота не участвуют в превращениях, они служат как бы «оболочкой», в которой с течением времени ядра водорода постепенно сливаются в ядра гелия. Однако в 1938 г. Ганс Бете и Чарльз Кричфилд показали, что образование гелия из водорода может происходить и без участия углерода или азота.

Схема этого процесса изображена на рис. 3.3. Два протона сталкиваются друг с другом и сливаются. При этом вылетают позитрон и нейтрино. Образовавшееся ядро состоит уже из одного протона и одного нейтрона. Это ядро имеет такой же заряд, как и ядро водорода, но оно в два раза тяжелее. Такой изотоп тяжелого водорода называют дейтерием. Если ядро водорода столкнется с ядром дейтерия, то они объединяются в атом гелия, который состоит из двух протонов и одного нейтрона. Такое ядро гелия не является «правильным» гелием. Это легкий изотоп Не3. Заряд его ядра совпадает с зарядом ядра гелия, а массовое число на единицу меньше. Если теперь два таких ядра «легкого» гелия столкнутся друг с другом, то при этом образуются «правильное» ядро гелия и два протона. В этой цепи реакций тоже происходит в конечном счете объединение четырех протонов с образованием одного ядра гелия.

Рис. 3.3. Ядерные реакции протон-протонной цепочки. Обозначения элементарных частиц такие же, как на рис. 3.2. В результате этих реакций водород тоже превращается в гелий. На верхней схеме показано, как два ядра водорода сталкиваются и образуют ядро дейтерия. В середине показано, как ядро дейтерия и ядро водорода объединяются в ядро изотопа гелия. При столкновении двух ядер этого изотопа гелия образуется нормальный гелий с массовым числом 4.

Какой же из двух процессов протекает в недрах звезд: углеродный цикл или протон-протонная цепочка? [7]

При достаточно высоких температурах в звездах могут протекать оба процесса. При температуре 10 миллионов градусов происходят в основном реакции протон-протонной цепочки. Если температура существенно выше, то будет преобладать выделение энергии за счет углеродного цикла.

Реакции протон-протонной цепочки были, по всей видимости, особенно важны при образовании первых звезд, возникших в нашей Вселенной, во время так называемого Большого взрыва, образовались только ядра водорода и гелия. Поэтому в первых звездах не было элементов-катализаторов, необходимых для работы углеродного цикла. Следовательно, их существование должно было поддерживаться за счет реакций протон-протонной цепочки. Ядра углерода возникли в недрах звезд позже из ядер гелия. Этот процесс мы рассмотрим в следующем разделе. Только после образования ядер углерода в последующих поколениях звезд появились элементы-катализаторы, которые необходимы для реакций углеродного цикла.


Рекомендуем почитать
Серебристые облака и их наблюдение

В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.


Астронавт. Необычайное путешествие в поисках тайн Вселенной

В детстве Майкл Массимино по прозвищу Масса мечтал стать Человеком-пауком, но в июле 1969 года он вместе со всем миром увидел, как прогуливаются по Луне Нил Армстронг и Базз Олдрин, и навсегда заболел мечтой о полете к звездам. На этом пути его поджидали препятствия, казавшиеся непреодолимыми: Майкл страдал страхом высоты, у него было плохое зрение, он проваливал важные экзамены. Однако упорство и верность мечте сделали свое дело: он не только сумел стать уникальным специалистом в области практической космонавтики, разработав программное обеспечение для роботизированного манипулятора, но и сам дважды слетал на орбиту, приняв участие в миссиях по ремонту телескопа «Хаббл».


Сказка о небесных механиках, заставивших небесных гигантов играть в футбол

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сказка об астрономе Слайфере

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.