100 миллиардов солнц: Рождение, жизнь и смерть звезд - [19]
Возникновение более тяжелых элементов
Что происходит в звезде, когда весь водород превратится в гелий? Эдвин Сальпетер, который в настоящее время преподает в Корнельском университете в США, показал, как гелий может превращаться в углерод. Вообще говоря, для этого превращения достаточно трех ядер гелия. Если эти ядра объединятся, то возникнет ядро углерода с массовым числом 12. Однако одновременное столкновение трех ядер гелия практически невероятно. Более вероятен процесс, который идет в две стадии (рис. 3.4). При этом вначале объединяются два ядра гелия и образуется ядро элемента бериллия с массовым числом 8. Этот изотоп бериллия радиоактивен. Возникшее ядро бериллия существует чрезвычайно короткое время, которое даже трудно себе представить. Спустя несколько десятимиллионных частей одной миллиардной доли секунды это ядро снова распадается на два ядра гелия, из которых оно возникло. Но если за этот короткий промежуток времени ядро изотопа бериллия столкнется с третьим атомом гелия, то возникнет устойчивое ядро углерода. Ядра изотопа Be>8 распадаются значительно чаще, чем происходят их столкновения с третьим атомом гелия. Однако в звездном веществе с температурой 100 миллионов градусов такие превращения происходят настолько часто, что освобождающаяся энергия может поддерживать постоянную температуру звезды и ее излучение. Что происходит дальше? При еще более высоких температурах могут объединяться атомы углерода. После объединения они распадаются разными способами на ядра таких элементов, как магний, натрий, неон и кислород. Атомы кислорода могут объединяться с образованием ядер серы и фосфора. Так образуются все более тяжелые атомные ядра. Возникает вопрос, могут ли в недрах звезд постепенно образовываться из водорода и гелия все химические элементы? Мы вернемся к нему в гл. 11. Теперь же нам достаточно знать, что в недрах звезд могут происходить ядерные реакции и прежде всего-превращение водорода в гелий. Они могут протекать в условиях, которые реально существуют во внутренней части звезд, а выделяющаяся энергия позволяет поддерживать излучение звезд в течение длительного времени.
Рис. 3.4. Превращение гелия в углерод. Два ядра гелия сливаются с образованием чрезвычайно радиоактивного ядра бериллия, которое очень скоро снова распадется на два ядра гелия. Ядро изотопа бериллия превращается в ядро углерода (с испусканием кванта света) только в том случае, если за короткое время жизни изотопа Be>8 произойдет его столкновение с еще одним ядром гелия.
Но откуда, собственно, мы знаем про свойства звездных недр? Как нам стала известна температура в центре звезд — там, куда никто не может заглянуть и откуда к нам не поступает непосредственно никакой информации? В следующей главе мы расскажем, почему о звездных недрах мы знаем больше, чем о земных. Будет сказано и о том, какую роль сыграли в этом современные вычислительные машины.
Глава 4
Звезды и модели их строения
К счастью, существует возможность заглянуть в недра звезд, узнать их внутреннее строение. Ведь звезды — это не чудо, на которое можно лишь взирать с благоговением. Они, как и все реальные объекты нашего мира, подчиняются законам физики и могут быть объектом научного исследования. Выше мы уже увидели, как был, без лишних слов, поставлен и решен вопрос о том, откуда берется энергия звезд, и как долго может существовать звезда за счет этой энергии ядерных реакций. Однако звезды подчиняются не только закону сохранения энергии, но и всем другим физическим законам, как любой другой объект во Вселенной.
Ниже мы коротко остановимся на том, как, опираясь на физические законы и некоторые известные свойства звездного вещества, можно получить представление о внутренней структуре звезд, как можно с помощью компьютера заглянуть в их недра. В случае простых звезд достаточно знать массу и химический состав звездного газа. Затем можно, даже не видя этой звезды на небе, решить за письменным столом уравнения, описывающие ее свойства, и полностью определить ее структуру. Таким способом можно узнать не только температуру поверхности звезды и ее светимость, а, следовательно, и положение звезды на диаграмме Г — Р, но и вычислить ее диаметр, а также, что интереснее всего, определить давление, температуру и плотность в любой точке звезды: не только на поверхности, но и в объеме. Читатель, который не слишком интересуется подробностями таких расчетов, может перейти сразу к разделу «Модель „молодого“ Солнца». В этом разделе мы исходим из того, что физические законы и свойства солнечного вещества, уже описанные нами раньше, заложены в большой программе для вычислительной машины. Затем мы будем только экспериментировать с этой программой.
Сила тяжести и давление газа
Все звезды должны (за исключением коротких переходных периодов) находиться в равновесии. Вес звездного вещества, который давит на внутренние слои звезды, и давление звездного газа должны взаимно уравновешиваться. Не будь давления газа, все звездное вещество сжалось бы в точку в центре звезды. Не будь силы тяжести, давление газа распылило бы все звездное вещество в пространстве. Параметры звездного вещества — давление, температура и плотность — должны быть такими, чтобы в каждой точке звезды сила тяжести и давление уравновешивали друг друга. Это условие равновесия помогает определить давление газа в каждой точке объема звезды. Мы уже видели, как Эддингтон использовал это условие, чтобы найти давление в центре Солнца. Определив это давление, он пришел к выводу, что температура в центре Солнца составляет около 40 миллионов градусов. Чтобы определить величины давления и температуры, необходимо знать свойства газа, из которого состоят звезды.
В книге рассказывается о самых высоких облаках земной атмосферы — серебристых, или мезосферных облаках. В первой главе рассказано об условиях видимости, структуре, оптических свойствах, природе и происхождении серебристых облаков, об исследованиях их из космоса. Во второй главе даны указания к наблюдениям серебристых облаков средствами любителя астрономии.
В детстве Майкл Массимино по прозвищу Масса мечтал стать Человеком-пауком, но в июле 1969 года он вместе со всем миром увидел, как прогуливаются по Луне Нил Армстронг и Базз Олдрин, и навсегда заболел мечтой о полете к звездам. На этом пути его поджидали препятствия, казавшиеся непреодолимыми: Майкл страдал страхом высоты, у него было плохое зрение, он проваливал важные экзамены. Однако упорство и верность мечте сделали свое дело: он не только сумел стать уникальным специалистом в области практической космонавтики, разработав программное обеспечение для роботизированного манипулятора, но и сам дважды слетал на орбиту, приняв участие в миссиях по ремонту телескопа «Хаббл».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.