100 миллиардов солнц: Рождение, жизнь и смерть звезд - [16]

Шрифт
Интервал

Мнение физиков об условиях, в которых гелий может образовываться из водорода, казалось ему тогда не слишком убедительным. Он больше доверял своим звездам и считал, что физики должны продолжать исследования и тогда они со временем смогут понять, как при относительно низких температурах около 40 миллионов градусов водород может превращаться в гелий. Эддингтон оказался прав.

Георгий Гамов и его туннельный эффект

Примерно в то же время, когда Эддингтон упорно настаивал в своей книге, что в звездах водород превращается в гелий, начался великий переворот в физике. Главными действующими лицами этого переворота были Луи де Бройль в Париже, Нильс Бор в Копенгагене, Эрвин Шрёдингер в Цюрихе и гёттингенские физики. Это были золотые двадцатые годы — годы расцвета гёттингенской школы физиков, руководимой Максом Борном, одним из основателей квантовой механики. Многие молодые физики, которые в то время съехались в Гёттинген со всего света, стали впоследствии знаменитыми учеными: Вернер Гейзенберг и Роберт Оппенгеймер, Поль Дирак и Эдвард Теллер. Одним из них был молодой выходец из России Георгий Гамов. Он занимался проблемой радиоактивности, а также вопросами естественного радиоактивного распада атомных ядер.

Существуют химические элементы, ядра атомов которых могут самопроизвольно распадаться. Из урана образуется при этом торий, из тория радий, который в свою очередь тоже распадается. Ядро наиболее широко распространенного изотопа радия состоит из 88 протонов и 138 нейтронов. Ядро радия испускает через определенное время два нейтрона и два протона. При этом масса ядра радия уменьшается. Четыре элементарные частицы, которые вылетают из ядра радия при радиоактивном распаде, остаются соединенными друг с другом. Они образуют ядро гелия. Было трудно понять, как ядро радия может испустить ядро гелия. Элементарные частицы, образующие ядро радия, размещены в очень малом объеме и притягиваются друг к другу чрезвычайно мощными силами ядерного взаимодействия. Ядерные силы намного превосходят электрическое отталкивание протонов. Если бы ядерных сил не было, то все протоны ядра радия разлетелись бы друг от друга. В то же время ядерные силы имеют очень небольшой радиус действия. Если удалить одну из элементарных частиц ядра достаточно далеко от остальных, то электрическое отталкивание будет преобладать, и частицы разлетятся. Классическая физика считает этот процесс невозможным, поскольку ядерные силы притягивают друг к другу элементарные частицы ядра. Однако в природе такой процесс происходит.

Гамов решил проблему распада радиоактивных атомов. Элементарные частицы в ядре радия действительно связаны друг с другом ядерными силами и не могут, вообще говоря, разлетаться. Однако квантовая механика утверждает, что существует небольшая, но конечная вероятность такого процесса. Хотя это невозможно в рамках классической механики, но часть атомного ядра, несмотря на мощные ядерные силы притяжения, может удалиться от остальных частиц настолько далеко, что возобладают силы электрического отталкивания и продукты реакции разлетятся. Этот процесс кажется невероятным, но он тем не менее происходит. Примерно один раз в тысячу лет атом радия может испустить ядро гелия.

Такое явление называют туннельным эффектом. Этот эффект был предсказан квантовой механикой. Название эффекта можно пояснить с помощью наглядной картины. Элементарные частицы, образующие ядро радия, связаны друг с другом ядерными силами. Они как бы отгорожены от внешнего мира кольцом высоких гор. Элементарные частицы в ядре не обладают достаточной энергией, чтобы перевалить через этот горный хребет. Классическая механика утверждает, что горы непреодолимы. Однако квантовая механика допускает процесс, при котором элементарная частица ядра может внезапно оказаться по другую сторону горного хребта. Иными словами, она как бы проскакивает на ту сторону через туннель, не поднимаясь в гору.

Если туннельный эффект позволяет элементарным частицам покинуть ядро, то, по мнению Гамова, может идти и обратный процесс: частицы из внешнего мира могут проникать в атомное ядро.

Туннельный эффект в звездах

Вернемся, однако, к звездам и к вопросу об источнике их энергии, который еще не был решен в двадцатые годы. Если с ядром радия может происходить процесс, запрещенный классической механикой, то почему подобное явление не может происходить с протонами на Солнце, пусть даже это и противоречит традиционной физике? В случае с ядром радия протоны могут разлетаться, только если они удалены на достаточное расстояние и силы электрического отталкивания превосходят силы ядерного притяжения. Но, несмотря на это, ядро радия распадается. Может быть, и протоны на Солнце могут сливаться друг с другом, хотя на первый взгляд их энергия не позволяет этого сделать?

Загадку об источнике энергии звезд решили физики Роберт Аткинсон и Фриц Хоутерманс. Они воспользовались представлениями Гамова о туннельном эффекте. В марте 1929 г. они послали в редакцию журнала «Zeitschrift fur Physik» статью под названием «К вопросу о возможности образования элементов в недрах звезд». Эта работа начиналась словами: «Не так давно Гамов показал, что из атомного ядра могут вылетать положительно заряженные частицы, тогда как по классическим представлениям их энергия недостаточно велика для этого процесса…» В этой статье Аткинсон и Хоутерманс объяснили, что, хотя в рамках классической физики ядра атомов водорода могут сливаться друг с другом только при температурах в несколько десятков миллиардов градусов, туннельный эффект допускает вероятность такого процесса уже при относительно низких температурах, существующих в недрах звезд. Хотя в звездах положительно заряженные протоны отталкиваются друг от друга и это электрическое поле напоминает высокие горы, препятствующие сближению протонов, протоны все же, пусть и очень редко, могут сблизиться друг с другом, словно пройдя под горами по туннелю. Сближение протонов происходит, несмотря на то, что энергия мала, чтобы они могли перевалить через «горную цепь» электрического отталкивания. Вероятность такого процесса не слишком велика, однако туннельный эффект позволяет протонам сливаться друг с другом в недрах звезд достаточно часто, чтобы энергия, которая освобождается при таком процессе, могла поддерживать жизнь звезды. Аткинсон и Хоутерманс подтвердили догадку Эддингтона: Солнце и звезды получают свою энергию за счет превращения водорода в гелий.


Рекомендуем почитать
Астронавт. Необычайное путешествие в поисках тайн Вселенной

В детстве Майкл Массимино по прозвищу Масса мечтал стать Человеком-пауком, но в июле 1969 года он вместе со всем миром увидел, как прогуливаются по Луне Нил Армстронг и Базз Олдрин, и навсегда заболел мечтой о полете к звездам. На этом пути его поджидали препятствия, казавшиеся непреодолимыми: Майкл страдал страхом высоты, у него было плохое зрение, он проваливал важные экзамены. Однако упорство и верность мечте сделали свое дело: он не только сумел стать уникальным специалистом в области практической космонавтики, разработав программное обеспечение для роботизированного манипулятора, но и сам дважды слетал на орбиту, приняв участие в миссиях по ремонту телескопа «Хаббл».


Сказка о небесных механиках, заставивших небесных гигантов играть в футбол

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сказка об астрономе Слайфере

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Астрономия за 1 час

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!


Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.