Если бы числа могли говорить. Гаусс. Теория чисел

Если бы числа могли говорить. Гаусс. Теория чисел

При жизни Карл Фридрих Гаусс получил титул короля математиков. Личность этого ученого можно сравнить с личностью другого его гениального современника и соотечественника — Вольфганга Амадея Моцарта. Оба были вундеркиндами, которым покровительствовали и помогали получить образование представители власти. Но в отличие от композитора, Гауссу повезло прожить долгую и спокойную жизнь. Он сделал много открытий в таких научных областях, как геометрия, астрономия, физика и статистика.

Прим. OCR: Знак "корень квадратный" заменен на SQRT(), врезки обозначены жирным шрифтом.

Жанры: Научпоп, Математика
Серии: -
Всего страниц: 46
ISBN: -
Год издания: 2012
Формат: Полный

Если бы числа могли говорить. Гаусс. Теория чисел читать онлайн бесплатно

Шрифт
Интервал


Antonio Rufian Lizana

Если бы числа могли говорить. Гаусс. Теория чисел

Наука. Величайшие теории Выпуск № 8, 2015

Если бы числа могли говорить. Гаусс. Теория чисел. 

Еженедельное издание

Пер. с исп. — М.: Де Агостини, 2015. — 168 с.

ISSN 2409-0069

© Antonio Rufian Lizana, 2012 (текст)

© RBA Collecionables S.A., 2012

© ООО «Де Агостини», 2014-2015

Введение

Если бы среди профессиональных математиков был проведен опрос, в котором попросили бы составить список из десяти самых выдающихся и влиятельных математиков в истории, мы уверены, что почти все они включили бы в него Карла Фридриха Гаусса. Эта гипотеза (как мы увидим далее, выдвигать гипотезы — метод работы, очень характерный для математики) основана на двух причинах. Первая — огромная важность его вклада в науку. Вторая причина — это широта тем, к которым Гаусс с огромным успехом проявил свой интерес. Сегодня математика — настолько обширная наука, что те, кто посвящает себя ей, глубоко знают только часть, близкую к области их специализации. Однако гений Гаусса позволил ему продвинуться почти во всех сферах математики. Следовательно, специалисты как по математическому, так и по числовому анализу, как геометры, так и алгебраисты, статистики или даже специалисты по математической физике видят в Гауссе «одного из своих».

Мы очень часто пользуемся такими определениями, как «вундеркинд» или «математический гений». Мало кто из математиков мог бы возразить против того факта, что эти эпитеты применимы к Гауссу. Число новых идей и открытий, к которым пришел этот немецкий математик еще до того, как ему исполнилось 25 лет, кажется необъяснимым.

Гауссу, сыну бедных родителей, удалось воспользоваться своим математическим талантом. Он родился в эпоху, когда математика еще была привилегированной сферой деятельности, которую финансировали придворные и меценаты или которой в свободное время занимались любители, такие как Пьер Ферма. Покровителем Гаусса был Карл Вильгельм Фердинанд, герцог Брауншвейгский, что позволило ученому посвятить себя призванию без необходимости зарабатывать на жизнь другим, более экономически выгодным делом. В качестве благодарности Гаусс посвятил покровителю свою первую книгу, «Арифметические исследования» (1801), и таким образом имя герцога оказалось связанным с одним из основных трудов в истории математики.

Гаусс жил в эпоху необычайных политических и социальных потрясений. Отрочество математика совпало с Великой французской революцией — ему было 12 лет, когда была взята Бастилия. Он пережил подъем Наполеона в молодости и его разгром при Ватерлоо в 38 лет. Он застал Мартовскую революцию в Германии в 1848 году в возрасте более 70 лет. В это время произошла первая индустриальная революция, которая оказала очень сильное воздействие на политическую и социальную жизнь Европы. Развитие промышленности позволило осуществить эксперименты, невозможные до этого времени, с телескопами и другими оптическими инструментами. Как мы увидим, все эти события повлияют на жизнь Гаусса.

К счастью, коллекция его трудов сохранилась в достаточно полном виде; многие из важных писем математика были опубликованы. Однако Гаусс трепетно относился к своему первенству в математических открытиях и даже использовал шифр, чтобы защитить их. По мнению некоторых исследователей, нераспространенность его работ вызвала отставание в развитии науки на целых полвека: если бы Гаусс позаботился о том, чтобы опубликовать хотя бы половину своих результатов, и не шифровал бы так тщательно свои объяснения, возможно, математика развивалась бы быстрее. Математический дневник Гаусса, хранившийся в его семье, стал доступен публике только в 1898 году. Его изучение подтвердило, что ученый доказал, не публикуя, многие результаты, которые другие математики пытались получить в течение всего XIX века. Гаусс всегда утверждал, что математика — это как архитектурное произведение: архитектор никогда не оставит строительные леса, чтобы люди не видели, как было построено здание. Естественно, такой взгляд на науку не способствовал лучшему пониманию его трудов коллегами-современниками.

Логическая структура подхода к математическим проблемам, предложенная Гауссом, в которой сначала формулируют результаты или теоремы, затем переходят к их доказательству и завершают выводами или следствиями, до сих пор остается обычным способом представления математических доказательств. Немецкий математик отказывался публиковать недоказанные результаты, и эта позиция определила переломный момент в подходе математиков к их науке. Хотя идея важности доказательства как необходимая составляющая научного процесса появилась еще в Древней Греции, до эпохи Гаусса всех намного больше интересовало применение научных открытий: если математика работала, никто особо не заботился о том, чтобы в строгой форме изложить, почему так происходит.

Когда Гаусс занялся арифметикой и теорией чисел, эти дисциплины состояли из множества разрозненных результатов, никак не связанных между собой. Ученый собрал существующие знания и объединил их в общую систему, указав на имеющиеся ошибки и исправив их. Он возвел математику XIX века на уровень, которого невозможно было достичь несколько лет назад, и поднял арифметику на вершину математики. Говоря его словами, «Математика — царица наук, а арифметика — царица математики».


Рекомендуем почитать
Лина Туманова - Охотница за демонами

Этот мир очень похож на наш. Москва, современность - вот только магия в нем не выдумка. Она неотъемлемая часть жизни людей. В этом мире живет Лина Туманова, она зарабатывает на жизнь тем, что призывает и изгоняет демонов. .


Невеста из ниоткуда

Женька Летякина – студентка, спортсменка, красавица… и просто девушка решительная. Поэтому, когда пришлось спасаться бегством от злоумышленников, она, недолго думая, прочитала заклинание «на отворение Врат», которому ее научила бабушка-колдунья, и оказалась… в 964 году от Рождества Христова. Как раз в это время верховный правитель племени весь Миронег отправил в Киев свою дочь Малинду – замуж за князя Святослава. Отправить-то отправил, вот только не уберегли невесту княжьи люди, сгинула девица, утонула… А тут им, как снег на голову, Женька.


О погоде

В эссе приведены любопытные наблюдения автора о погоде и связанными с ней смешными происшествиями.


О памяти

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Погода интересует всех

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.


Волк по имени Ромео. Как дикий зверь покорил сердца целого города

Книга Ника Дженса, фотографа дикой природы на Аляске, – это невероятная и во многом философская история об особенном черном волке, проявившем небывалую теплоту и привязанность к людям. Ромео, дикий зверь, выбравший своим домом окрестности города Джуно, первоначально вызвал у его жителей бурю противоречий. Однако со временем, видя, как волк играет с домашними собаками, выходит поздороваться со знакомыми ему людьми или провожает их на прогулку, они приняли и полюбили его. Проведя шесть лет по соседству с жителями Джуно, Ромео стал неофициальным символом города.


Суд идет. О судебных процессах прошлого: от античности до новейшей истории

Суд – это место, где должна вершиться Справедливость. «Пусть погибнет мир, но восторжествует Правосудие!» – говорили древние. Однако в истории различных обществ мы встречаем примеры разных судебных процессов: на одних подсудимые приносятся с жертву сиюминутной политической целесообразности, на других суд оказывается не в состоянии разобраться в криминалистических хитросплетениях. Среди персонажей этой книги в разных главах вы встретите как знаменитых людей – Сократа, Жанну д’Арк, Петра I, так и простых смертных – русских крестьян, английских моряков, итальянских иммигрантов.


Перо и маска

«Настоящая книга представляет собою сборник новелл о литературных выдумках и мистификациях, объединенных здесь впервые под понятиями Пера и Маски. В большинстве они неизвестны широкому читателю, хотя многие из них и оставили яркий след в истории, необычайны по форме и фантастичны по содержанию».


Полчаса музыки. Как понять и полюбить классику

Cлушать музыку – это самое интересное, что есть на свете. Вы убедитесь в этом, читая книгу музыкального журналиста и популярного лектора Ляли Кандауровой. Вместо скучного и сухого перечисления фактов перед вами настоящий абонемент на концерт: автор рассказывает о 600-летней истории музыки так, что незнакомые произведения становятся близкими, а знакомые – приносят еще больше удовольствия.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.