Если бы числа могли говорить. Гаусс. Теория чисел - [2]

Шрифт
Интервал

Первым огромным результатом, полученным еще до того, как Гауссу исполнилось 19 лет, было открытие метода построения с помощью линейки и циркуля многоугольника с 17 сторонами (17-угольника). Построение правильных многоугольников волновало математиков со времен классической Греции, при этом результаты были нерегулярными, поэтому некоторые многоугольники (например, многоугольник с семью сторонами, или семиугольник) невозможно было построить точно: линейки и циркуля было недостаточно, а более совершенных приборов не существовало. Как писал сам Гаусс, который очень гордился этим открытием в течение всей жизни, «это абсолютно не связано со случайностью, поскольку это был плод усиленных размышлений. Еще не встав с кровати, я увидел очень четко всю эту связь, так что я тут же применил к 17-угольнику соответствующее числовое утверждение». Гаусс не только решил эту задачу, но и нашел общий способ разрешения вопроса, может ли многоугольник быть построен с помощью линейки и циркуля. В своем завещании Гаусс попросил, чтобы на его могильной плите выгравировали многоугольник с 17 сторонами, построенный по его методу. Однако этого не было сделано: резчик счел задачу слишком сложной.

Без сомнения, результат, который принес ученому славу среди его современников, — это вычисление орбиты Цереры, карликовой планеты, открытой в 1801 году Джузеппе Пиацци из Палермской обсерватории. Общее признание побудило Гаусса углубиться в астрономию, и он стал директором Гёттингенской обсерватории. Скорее всего, астрономические наблюдения отвлекли ученого от работы в области чистой математики, где было сложнее найти славу. Для математики определение орбиты Цереры может быть анекдотическим фактом, но метод, использованный для ее вычисления, существенно подтолкнул развитие науки. Это был метод наименьших квадратов. В этом случае большую важность имеет процесс, использованный для достижения результата, чем сам результат. Приписывание авторства этого метода Гауссу вызвало некоторую полемику, поскольку Адриен Мари Лежандр, который был на 25 лет старше Гаусса, также оспаривал первенство этого открытия. Соперничество с Лежандром длилось много лет и распространилось на многие области математики. Очень часто оказывалось, что если Лежандр утверждал, что открыл новую математическую истину, Гаусс опровергал это, аргументируя, что он знает ее и уже использовал этот результат. В письме Гаусса от 30 июля 1806 года коллеге-астроному по фамилии Шумахер, с которым их связывала большая дружба, ученый сетовал: «Похоже, что мне предназначено совпадать с Лежандром почти во всех своих теоретических работах». Такое соперничество встречалось очень часто и объяснялось методами работы и распространения результатов у ученых того времени. В течение всей своей жизни Гаусс упорно вступал в открытую борьбу за первенство своих открытий. И только после его смерти, когда были изучены все дневники и письма, стало ясно, что правда была на стороне Гаусса. В чем нет никаких сомнений, так это в том, что метод наименьших квадратов оказался очень полезным инструментом для разрешения многих проблем, в которых речь идет об установлении функции, наилучшим образом приближающейся к множеству данных с критерием минимизации. Наиболее важные примеры применения этого метода находятся в области статистики, где они достигают вершины в оценке параметров населения с помощью модели, построенной благодаря такому известному заключению, как теорема Гаусса — Маркова. Любопытно, что имя Гаусса в области статистики обычно связывают со знаменитым «гауссовым колоколом», однако на самом деле открытием нормального распределения мы обязаны Абрахаму де Муавру.

Гаусс очень рано подступился к так называемой основной теореме алгебры, в которой установлено, что у многочлена столько корней (то есть значений, при которых многочлен равен нулю), сколько показывает его степень. Эта проблема была темой диссертации ученого. В течение жизни он представил несколько доказательств этого результата, каждый раз все более утонченных и понятных. Как и в случае с открытием орбиты Цереры, во время поиска доказательств Гаусс выявил новые и очень полезные математические конструкции, такие как комплексные числа. В 1799 году ученый доказал, что основываясь на таком особом числе, как корень из -1 (или числе i), математики могут решить любое полиномиальное уравнение.

Числовой анализ и особенно изучение простых чисел, возможно, самая известная часть работы Гаусса, которой он посвятил больше всего времени. В молодости ученый получил в качестве подарка таблицу с несколькими миллиардами простых чисел. На его взгляд, эти числа шли беспорядочно. Когда Гаусс смотрел в числовые таблицы, он не мог определить никакого правила, которое показывало бы ему, на сколько единиц нужно продвинуться вперед, чтобы найти следующее простое число. Казалось, такого правила не существует. Гаусс не мог принять подобную идею: первичная потребность в жизни математика — это находить упорядоченные структуры, описывать и объяснять правила, лежащие в основе природы, и предвидеть, что произойдет в дальнейшем. Эта мысль, которая стала для него навязчивой, привела к формулировке некоторых великих гипотез распределения простых чисел и их нахождения с помощью математических процедур. Проблема нахождения простых чисел очень актуальна сегодня, поскольку на их свойствах основаны многие процессы шифрования информации.


Рекомендуем почитать
Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.


Золотая Орда. Монголы на Руси. 1223–1502

Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.


Великая разруха Московского государства, 1598–1612 гг.

В русской истории 14 лет, прошедших с 1598 по 1612 год, называют «разрухою» или «Смутным временем». «Смятения» Русской земли, или «Московская трагедия», как писали о ней иностранцы, началась с прекращением династии Рюриковичей, т. е. после кончины Царя Фёдора Ивановича, и кончилась, когда земские чины, собравшиеся в Москве в начале 1613 г., избрали на престол в Цари Михаила Фёдоровича, родоначальника новой династии Дома Романовых.


Камень, ножницы, теорема. Фон Нейман. Теория игр.

Джон фон Нейман был одним из самых выдающихся математиков нашего времени. Он создал архитектуру современных компьютеров и теорию игр — область математической науки, спектр применения которой варьируется от политики до экономики и биологии, а также провел аксиоматизацию квантовой механики. Многие современники считали его самым блестящим ученым XX века.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Получение энергии. Лиза Мейтнер. Расщепление ядра

Женщина, еврейка и ученый — непростая комбинация для бурного XX века. Австрийка по происхождению, Лиза Мейтнер всю жизнь встречала снисходительность и даже презрение со стороны коллег-мужчин и страдала от преследований нацистов. Ее сотрудничество с немецким химиком Отто Ганом продолжалось более трех десятилетий и увенчалось открытием нового элемента — протактиния — и доказательством возможности расщепления ядра. Однако, несмотря на этот вклад, Мейтнер было отказано в Нобелевской премии. Она всегда отстаивала необходимость мирного использования ядерной энергии, в изучении которой сыграла столь заметную роль.