Знание-сила, 2008 № 12 (978) - [25]

Шрифт
Интервал

Углеродное волокно отличается также высокой химической стойкостью, оно выдерживает воздействие концентрированных кислот и щелочей, а потому пригодно, например, для фильтрации агрессивных веществ или очистки газов от дисперсных примесей. Оно устойчиво к действию света и проникающей радиации; его гигроскопичность невысока, хотя и поглощает водяные пары из атмосферы.

Изготавливают углеродное волокно, главным образом, из следующих органических материалов (так называемых прекурсов).

Целлюлоза (вискоза). Углеродное волокно, полученное из целлюлозы или вискозы, стоит дешево, но его структура далека от идеальной, а потому по своим качествам оно уступает другим разновидностям углеволокна. Так, его прочность и упругость сравнительно невысоки. То же касается его электрической и тепловой проводимости. Зато данный материал хорош для изготовления нитей накаливания, поскольку его электрическое сопротивление, наоборот, велико. Вообще же углеродное волокно, полученное из целлюлозы, обычно используют в качестве изоляционного материала, работающего при высокой температуре.

Эта лопасть судового винта выполнена из углеродного волокна


Полиакрилонитрил (ПАН). Большая часть углеродных волокон, применяемых в современной промышленности, изготовлена из полиакрилонитрила. Особенность этого типа волокон — высокая прочность на растяжение, вот только стоимость их тоже высока, что обусловлено стоимостью исходного материала. Впервые подобные волокна были получены на рубеже 1950 — 1960-х годов в СССР, а затем и в Японии.

Пек (смола). Годятся фенольные смолы, каменноугольные и нефтяные пеки, причем какой бы материал мы ни выбрали, он будет заметно дешевле, чем полиакрилонитрил. Однако затраты на его очистку и переработку так высоки, что стоимость полиакрилонитрилового углеродного волокна окажется, в конечном счете, ниже. К тому же углеродные волокна, полученные из пека, характеризуются низкой прочностью на разрыв и изгиб.

Обычно углеродное волокно получают термической обработкой исходных органических волокон. Их нагревают в азотной или аргоновой атмосфере до температуры порядка 800—1500 градусов Цельсия. Подобный процесс называют карбонизацией, ведь после такой обработки в материале остаются в основном атомы углерода. Содержание углерода в готовом волокне составляет 85 процентов и выше. Это приводит к существенному повышению прочности и жесткости материала.

При нагреве свыше 1800 градусов Цельсия происходит графитизация волокна. Его структура становится близка идеальной структуре графита, отличаясь лишь расстоянием между отдельными слоями углерода. Содержание углерода в волокне, прошедшем подобную обработку, достигает почти 99 процентов.

Готовое углеродное волокно — диаметр отдельных волокон равен примерно 5 — 8 микрометрам — выпускают в виде нитей, жгутов, лент, тканых и нетканых материалов. Все они отличаются высокими механическими характеристиками, а потому их используют в качестве упрочняющего наполнителя пластмассы. Связующим веществом в такой пластмассе — ее называют углепластиком — служит обычно эпоксидная, феноло-формальдегидная или полиэфирная смола.

Свойства углепластика можно заранее смоделировать. Любая деталь, изготовленная из этого материала, в какой-то мере уникальна. Важнейшее значение имеет расположение волокон. Ведь углепластик может быть как изотропным, так и анизотропным материалом, и его механические свойства зависят от того, как ориентированы отдельные волокна. У анизотропного материала, например, прочность вдоль волокон очень высока, зато в поперечном направлении мала. Так что конструкторы должны знать, каким нагрузкам будет подвергаться изделие и в каком направлении те будут действовать. А вот у изотропного материала отдельные волокна равномерно распределены во всех направлениях. Поэтому показатели его прочности в любом направлении примерно равны, и показатели эти невысоки. Так что, изотропный углепластик имеет малое промышленное значение.

Из углеволокна изготавливают сопла двигателей и наконечники ракет


Заглянуть в телескоп и увидеть углепластик

Поначалу углеродное волокно применялось прежде всего в авиации и космонавтике, где была особенно высока потребность в материале, который не уступал бы по прочности стали, но был гораздо легче нее. Еще в 1976 году в США приняли программу по использованию углеродного волокна в авиастроении. Так, из него изготавливали отдельные детали самолетов «Боинг-727» и «Боинг-737». Постепенно сфера его применения расширялась, ведь это позволяло снизить вес самолета на 15 — 30 процентов и сократить расход топлива. Сейчас из углепластика выполнена, например, большая часть несущих поверхностей аэробуса А380 и фюзеляж «Боинга- 787». Эти самолеты примерно на 30 — 50 процентов по массе состоят именно из углепластика (для сравнения: в 1982 году в самолете «Боинг- 767» доля углепластика по массе составляла всего 3 процента). А ведь уменьшение веса аэробуса А380 всего на 1 килограмм приводит к экономии трех тонн горючего в год.

Легкость и прочность! Спрос на такое сочетание свойств очень высок. Не случайно углеродное волокно завоевало популярность и в автомобилестроении. Так, тормозные диски, изготовленные из него, оказываются примерно на 60 процентов легче стальных дисков. Они могут подолгу работать в очень сложных условиях, при температурах порядка 750 градусов Цельсия и даже в отдельных случаях при 1000 °С.


Еще от автора Журнал «Знание-сила»
Знание-сила, 2000 № 08 (878)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2000 № 02 (872)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2001 № 03 (885)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2000 № 04 (874)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1999 № 01 (859)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1999 № 02-03 (860,861)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.