Знание-сила, 2005 № 03 (933) - [19]
Что же является математическим образом этого "невезения"? Выше уже звучало слово "случайность". "Король математиков", как его называли современники, К. [аусс установил, что сумма независимых, одинаково распределенных случайных величин подчиняется вполне определенному закону (рис. 2). Видно, что кривая быстро спадает, большие отклонения в соответствии с этим законом очень редки. Настолько, что ими можно пренебречь.
Простой пример: по этому закону распределен рост людей. Не знаю, как читателю, а мне трехметровых гигантов встречать не приходилось. Поэтому вероятностью такой встречи я с легким сердцем пренебрегаю.
Но есть и другой класс законов, которые называют степенными (пунктирная кривая на том же рисунке). Здесь "хвост" убывает гораздо медленнее, поэтому такие законы часто называют "распределениями с тяжелыми хвостами", и большими отклонениями тут пренебречь нельзя. Если бы по такому закону был распределен рост, то это был бы уже мир восточных сказок с 30-метровыми джиннами, ифритами, дэвами, которые вполне могли встретиться в жизни простых смертных.
Рис. 2
Классическим, привычным является гауссово распределение
Именно в мире восточных сказок мы обычно и оказываемся, сталкиваясь с бедствиями, катастрофами, авариями. Такова статистика землетрясений, наводнений, ураганов, инцидентов с хранением ядерного оружия, биржевых крахов, ущерба от утечки конфиденциальной информации, многих других невзгод. И защищаться от них нужно совсем иначе, чем от обычных "гауссовых аварий". При "степенных бедствиях" надо рассчитывать на худшее. Думая о землетрясениях, нужно не надеяться на авось, а вести сейсмостойкое строительство.
Чтобы представить масштаб редких катастрофических событий, достаточно напомнить несколько эпизодов из истории XX века. При наводнении 1931 года на реке Янцзы в Китае погибли 1,3 миллиона человек, при Тянь-Шаньском землетрясении в 1976 году — около 650 тысяч, при наводнении в Бангладеш в 1970 — более 500 тысяч, а без крова остались 28 миллионов человек.
Откуда же берутся степенные законы и грозный мир восточных сказок? Американские исследователи П. Бак, Ц. Танг и К. Вайзенфельд в 1978 году высказали простую гипотезу: случайные воздействия на взаимодействующие динамические системы могут привести к лавине, то есть позволить одним костяшкам домино повалить другие.
Опасность в том, что динамические закономерности осложняются привносимой извне случайностью. Как сейчас говорят, эти явления происходят "на кромке хаоса". Это и стало основой теории самоорганизованной критичности — новой звезды нелинейной динамики. Среди ее приложений — описание поведения фондовых рынков, биологической эволюции, землетрясений, движения по автобанам, трафика сообщений через компьютерные сети и многое другое.
Теория управления рисками поставила перед специалистами по хаосу, компьютерному моделированию, работе с большими массивами данных еще одну интересную задачу. Условно ее можно назвать анализом длинных причинно-следственных связей.
Все помнят историю с фреонами. Отказаться от них решили в Монреале в 1992 году. И обойтись это должно более чем в 12 миллиардов американских долларов. За незнание длинных причинно-следственных связей приходится платить очень дорого.
А есть и другие, гораздо более опасные связи. Мы оперируем сейчас такими временными и пространственными масштабами, с которыми никогда не имели дела раньше. Нужна техника, более того — даже индустрия компьютерного анализа, на выходе которого должно быть предупреждение о будущих угрозах. Чтобы дальше царствовать спокойно, нужен золотой петушок.
Рис.З
Сравните две кривые.
Сверху - зависимость логарифма индекса Доу-Джонса от времени перед Великой депрессией 1929 г. Внизу - зависимость концентрации ионов хлора в родниках перед землетрясением е Кобе в 1995 г.
И еще, пожалуй, одна картинка, показывающая, что самые разные катастрофические события могут развиваться по одним законам, — а это загадка и надежда на разгадку. Речь идет о сложно организованных иерархических системах.
На рис. 3 сверху по оси ординат отложен логарифм индекса Доу- Джонса, одного из главных индикаторов состояния экономики, по оси абсцисс — время вверху. Здесь показан период перед Великой депрессией 1929 года. Внизу — концентрация ионов хлора в родниках в период, предшествующий землетрясению в Кобе. Обе кривые очень похожи, обе описываются с высокой точностью одной формулой. И, видимо, за этим сходством кроется аналогия между механизмами обоих явлений, возможность перенести методы прогноза из одной области в другую. Возможно, это ключ к разгадке.
И еще одна задача. Допустим, мы живем в 1927 году и знаем, что ждет американцев через два года. Как уберечь людей от беды? Это проблема социума, направляемого развития, воздействия на общественное сознание.
Работа с информацией, основанная на компьютерных технологиях, глобальные телекоммуникации — сегодня главные козыри при управлении риском. Во-первых, потому, что каждая катастрофа должна учить. В XX веке у каждой катастрофы были "предтечи" — аварии того же типа, но меньшего масштаба. И чтобы предупредить "премьеру", надо на основе скромной "репетиции" менять нормы, планы, правила игры в социуме и техносфере. Лучше вложить тысячу в прогноз и предупреждение аварии, чем миллион в ликвидацию ее последствий. Во-вторых, информация и прогноз позволяют спасать тысячи жизней, сокращая время реагирования на события. В-третьих...
В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.
Издание представляет собой исследование восточной литературы, искусства, археологических находок, архитектурных памятников. Повествование о могуществе и исчезновении городов и царств шумеров, хеттов, ассирийцев, скифов, индийцев сопровождается черно-белыми и цветными фотоиллюстрациями. В конце издания представлена хронологическая таблица заселения Древнего Востока. Красиво изданная, богато иллюстрированная книга для среднего и старшего возраста. Цветные полностраничные репродукции и черно-белые в тексте на каждой странице. На переплете: фрагмент выкопанной в Уре мозаичной плиты «Шумерское войско в походе». Издание второе.
Cлушать музыку – это самое интересное, что есть на свете. Вы убедитесь в этом, читая книгу музыкального журналиста и популярного лектора Ляли Кандауровой. Вместо скучного и сухого перечисления фактов перед вами настоящий абонемент на концерт: автор рассказывает о 600-летней истории музыки так, что незнакомые произведения становятся близкими, а знакомые – приносят еще больше удовольствия.
Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».