Знание-сила, 2001 № 08 (890) - [19]

Шрифт
Интервал

Состояние электронов описывается в квантовой теории так называемой волновой функцией, что отражает присущие этим частицам волновые свойства. Уже на заре квантовой теории утвердилось представление, что эта функция указывает вероятность нахождения электрона в том или ином месте. Волновая функция, описывающая самое низкоэнергетическое состояние электрона в его «пузырьке», имеет, согласно теории, шарообразный вид; волновая функция следующего по энергии состояния – вид гантели, причем основная часть энергии электрона сосредоточена в шарах такой «гантели», оставляя «перемычку» между ними почти «пустой», то есть не способной противостоять наружному давлению. Дойдя до этого места в своих рассуждениях, Марис делает вполне, казалось бы, логичный следующий шаг: «Если давление гелия снаружи на «электронный пузырек» будет достаточно большим, то может возникнуть возможность разрыва «перемычки», то есть разделения «пузырька» на две половинки».

Это было бы еще ничего, так как можно было бы думать, что электрон окажется целиком в одной из половинок «пузырька», тогда как другая попросту «схлопнстся». Но вывод Мариса становится поистине «безумным» (по определению Нильса Бора, спрашивавшего, достаточно ли идея безумна, чтобы быть плодотворной), когда он напоминает, что разорванная «гантель» была средоточием электронной волновой функции, и, стало быть, каждая половинка такой «гантели» должна, по определению, содержать половинку этой функции, то есть половинку электрона – его массы и его заряда. Марис даже подсчитал, когда это «расщепление электрона» может произойти: при температуре ниже 1,7 градуса Кельвина, когда жидкий гелий становится сверхтекучим, то есть в нем исчезает вязкость. Пока вязкость наличествует даже частично, говорит Марис, давление гелия попросту понуждает гантелеобразный электронный пузырек снова принять шарообразную форму, то бишь вернуться в самое низкоэнергетическое состояние, но когда вязкость исчезает, жидкость становится такой «скользкой», что не может предотвратить деление «пузырьков».

Вернемся к началу. О каком «эксперименте тридцатилетней давности», якобы подтверждающем его «безумную» идею, говорил Марис? В конце шестидесятых годов Норсби и Сандерс из университета в Миннесоте, изучая электрический ток, образуемый движением «электронных пузырьков» в жидком гелии под действием электрического поля, обнаружили, что если облучить гелиевую жидкость светом, электрический ток увеличивается. Поначалу они думали, что свет выбивает электроны из «пузырьков» и эти свободные электроны движутся быстрее, что и увеличивает ток. Но позже было показано, что выбитые светом электроны тотчас образуют новые «пузырьки», так что ток вроде бы не должен меняться, и результат, полученный Норсби и Сандерсом, оказался необъяснимым. Он оставался загадочным все прошедшие тридцать лет, пока Марис не выступил со своей идеей и не объяснил, что свет должен возбуждать электроны в «пузырьках» в «гантелеобразное» состояние и тем самым вызывать растепление «пузырьков». «Малые «пузырьки» подвижнее, – говорит Марис, – и когда их становится больше, ток, естественно, растет».

Аналогичным образом Марис объясняет и загадочный результат более поздних экспериментов Ихаса – Сандерса (1971) и Ван-Эдена – Мак-Клинтока (1984). Эти экспериментаторы создавали миллионы электронных «пузырьков» в гелии с помощью электрического разряда и определяли момент их прихода (под воздействием электрического поля) к некому экрану. Вместо того чтобы прийти к нему одновременно (поскольку они родились одновременно), «пузырьки» почему-то приходили тремя дискретными группами. Согласно Марису, все дело опять-таки в растеплении электронов. Разряды порождают вспышку света, свет возбуждает электроны в «пузырьках», и «пузырьки» делятся на половинки и четвертушки; ясно, что «пузырьки» с целыми электронами приходят к экрану быстрее, чем «пузырьки» с половинным зарядом (на них электрическое поле действуете вдвое меньшей силой), а те – быстрее, чем «пузырьки» с четвертью электрона.

Четверть электрона… Это звучит так ошеломляюще непривычно, что даже неспециалист невольно поежится, наверное. Специалистам еще хуже: если идея Мариса верна, то неверна квантовая теория. Но они убеждены, что квантовая теория верна: она уже объяснила столько явлений и имеет столько практических выходов, что ее основы всем представляются незыблемыми. Значит, ошибается Марис. Но, как уже сказано, найти ошибку в его рассуждениях пока не удалось никому. Разумеется, может быть и так, что в основах квантовой теории придется что-то пересмотреть, пришлось же пересмотреть механику Ньютона в области очень больших скоростей и в мире микрочастиц. Но пока специалисты предпочитают без нужды с пересмотром не торопиться. Что касается самого Мариса, то он говорит, что не очень огорчится, если окажется не прав. Свою «безумную» идею он уже бросил в научный мир, и результат ему представляется ободряющим: научный мир призадумался. «Я набрел на странную загадку, – говорит он. – Я хотел, чтобы люди задумались над ней вместе со мной. Я был бы счастлив, даже оказавшись не прав, но предварительно заставив коллег поразмыслить».


Еще от автора Журнал «Знание-сила»
Знание-сила, 2000 № 08 (878)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2000 № 02 (872)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2001 № 03 (885)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2000 № 04 (874)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1999 № 01 (859)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1999 № 02-03 (860,861)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.