Значимые фигуры - [7]

Шрифт
Интервал

Земля была плодородна, местные жители дружелюбны, и вскоре Сиракузы стали самым процветающим и могущественным греческим городом на всем Средиземноморье. В трактате «Псаммит», или «Исчисление песчинок», Архимед говорит, что его отцом был астроном Фидий. Если верить «Сравнительным жизнеописаниям» Плутарха, то он был дальним родственником тирана Сиракуз Гиерона II. Считается, что в юности Архимед учился в египетском городе Александрия, расположенном в дельте Нила, где встречался с Кононом Самосским и Эратосфеном Киренским. Это подтверждают, в частности, утверждения Архимеда о том, что Конон был его другом; кроме того, вводные части его книг «Послание к Эратосфену о методе» и «Задача о быках» обращены к Эрастофену.

О смерти Архимеда тоже ходят легенды, в свое время мы доберемся и до них.

* * *

Математическая репутация Архимеда зиждется на книгах, которые уцелели и дошли до нас – все в более поздних копиях. «Квадратура параболы», написанная в форме письма к другу Архимеда Досифею, содержит 24 теоремы о параболах, последняя из которых дает площадь параболического сегмента, выраженную через площадь связанного с ним треугольника. Парабола вообще занимает видное место в трудах Архимеда. Это один из типов конических сечений – семейства кривых, игравшего значительную роль в греческой геометрии. Чтобы получить коническое сечение, нужно разрезать плоскостью двойной конус, образованный при соединении вершинами двух одинаковых конусов. Существует три основных типа конических сечений: эллипс – замкнутый овал, парабола – U-образная кривая и гипербола – две U-образные кривые, расположенные «спина к спине».



Работа «О равновесии плоских фигур» состоит из двух отдельных книг. В ней устанавливаются фундаментальные закономерности того, что мы сегодня называем статикой, – той области механики, где анализируются условия, при которых тело остается в покое. Дальнейшее развитие этой темы образует фундамент всего строительного искусства и дает возможность рассчитать силы, действующие на структурные элементы зданий и мостов, и гарантировать, что они действительно сохранят покой и не будут ни вспучиваться, ни рушиться.

Первая книга посвящена в основном закону рычага, который Архимед формулирует так: «Два груза находятся в равновесии на расстояниях, обратно пропорциональных их весам». Одно из следствий этого состоит в том, что длинный рычаг увеличивает малую силу. Плутарх сообщает нам, что Архимед драматически усилил это утверждение в письме к царю Гиерону: «Дайте мне точку опоры, и я переверну Землю». Конечно, для этого ему потребовался бы невероятно длинный и идеально жесткий рычаг, но главный недостаток рычага состоит в том, что, хотя приложенная сила увеличивается, дальний конец рычага проходит куда меньшее расстояние, чем место приложения силы. На самом деле Архимед мог бы сдвинуть Землю на то же (крохотное-крохотное) расстояние, просто подпрыгнув на месте. Тем не менее рычаг очень эффективен, как и другое устройство (вариант рычага), также известное Архимеду, – полиспаст. Когда скептически настроенный Гиерон попросил Архимеда продемонстрировать свое изобретение, тот

…велел наполнить обычной кладью царское трехмачтовое грузовое судно, недавно с огромным трудом вытащенное на берег целою толпою людей, посадил на него большую команду матросов, а сам сел поодаль и, без всякого напряжения вытягивая конец каната, пропущенного через составной блок, придвинул к себе корабль – так медленно и ровно, точно тот плыл по морю[1].

Вторая книга посвящена в основном нахождению центра тяжести различных геометрических фигур – треугольника, параллелограмма, трапеции и сегмента параболы.

Книга «О сфере и цилиндре» содержит результаты, которыми Архимед настолько гордился, что даже велел начертать их на своей гробнице. Он доказал вполне строго, что площадь поверхности сферы в четыре раза больше площади любого ее большого круга (такого, как экватор сферической Земли); что объем шара составляет две трети объема цилиндра, описанного вокруг этого шара; и что площадь любого сегмента шара, отрезанного от него плоскостью, равна площади соответствующего сегмента такого цилиндра. В своем доказательстве он использовал витиеватый метод, известный как метод исчерпывания, который первым предложил Евдокс при работе с пропорциями с участием иррациональных чисел, которые невозможно точно представить в виде дроби. В современных терминах можно сказать, что Архимед доказал: площадь поверхности сферы радиуса r равна 4πr>2, а заключенный в ней объем равен 4/3πr>3.

У математиков есть привычка представлять конечный результат в красиво организованном, упорядоченном виде, скрывая от глаз тот часто путаный и сумбурный процесс, в результате которого этот результат был получен. Нам повезло кое-что узнать о том, как Архимед делал свои открытия в отношении сферы, поскольку этот процесс нашел отражение в «Послании к Эратосфену о методе». Долгое время работа считалась утраченной, но в 1906 г. датский историк Йохан Гейберг обнаружил так называемый палимпсест Архимеда, содержавший ее неполный список. Палимпсест – это текст, стертый или смытый в древности с целью повторно использовать пергамент или бумагу, на которых он был написан. Около 530 г. Исидор Милетский собрал работы Архимеда в Константинополе (современный Стамбул), столице Византийской империи. В 950 г. их переписал неизвестный византийский писец; в то время в Константинополе действовала школа Льва Математика, в которой изучались работы Архимеда. После этого рукопись каким-то образом переместилась в Иерусалим, где в 1229 г. была разобрана, отмыта (не слишком хорошо), сложена пополам и заново переплетена уже в виде 177-страничной христианской литургической книги.


Еще от автора Йэн Стюарт
Наука Плоского мира. Книга 3. Часы Дарвина

Важно не только читать хорошие книги, но и писать таковые… Из-за нарушения этого правила волшебники Незримого университета вынуждены вновь спасать несчастную вселенную Круглого мира.XIX век, Англия. Некий человек по имени Чарльз Дарвин пишет книгу «Теология видов», которая не только становится бестселлером, но и тормозит научный прогресс более чем на век, что неизбежно вызовет новый ледниковый период в ближайшие столетия. Ну и как тут не вмешаться аркканцлеру Чудакулли и его коллегам?Третья книга научно-популярного цикла, созданного Терри Пратчеттом в соавторстве с Йеном Стюартом и Джеком Коэном, рассказывает читателю о теории эволюции и ее влиянии на развитие всего человечества.Впервые на русском языке!


Колесники

Добро пожаловать в XXIII век!В эпоху, когда человечество наконец-то «освоилось» в Солнечной системе.На юпитерианскую луну Каллисто, где космоархеологи нашли погребенное под многотысячелетними слоями льдов… устройство? Или все-таки СУЩЕСТВО?То, что привезли на Землю. То, что однажды… включилось? Или все-таки – ожило?И тогда гигантская комета, летевшая к Юпитеру, вдруг изменила свою траекторию – и понеслась к Земле…Что это – нелепое стечение обстоятельств? Неизвестный космический фактор? Или – непреложное доказательство существования на Юпитере разумной жизни?И теперь космический флот Земли отправляется к Юпитеру…


Величайшие математические задачи

Закономерности простых чисел и теорема Ферма, гипотеза Пуанкаре и сферическая симметрия Кеплера, загадка числа π и орбитальный хаос в небесной механике. Многие из нас лишь краем уха слышали о таинственных и непостижимых загадках современной математики. Между тем, как ни парадоксально, фундаментальная цель этой науки — раскрывать внутреннюю простоту самых сложных вопросов. Английский математик и популяризатор науки, профессор Иэн Стюарт, помогает читателю преодолеть психологический барьер. Увлекательно и доступно он рассказывает о самых трудных задачах, над которыми бились и продолжают биться величайшие умы, об истоках таких проблем, о том, почему они так важны и какое место занимают в общем контексте математики и естественных наук.


Наука Плоского мира. Книга 4. День Страшного Суда

В двух мирах – Плоском и Круглом – вновь переполох! Омниане узнали о Круглом мире и хотят его контролировать. Само его существование – это издевательство над их религией. Однако волшебники Незримого университета придерживаются совсем другой точки зрения. В конце концов, они создали этот мир!В четвертой книге цикла «Наука Плоского мира» Терри Пратчетт, профессор Йен Стюарт и доктор Джек Коэн создают мозгодробительную смесь литературы, ультрасовременной науки и философии в попытке ответить на ДЕЙСТВИТЕЛЬНО большие вопросы – на этот раз о Боге, Вселенной и, честно говоря, Обо Всем.Впервые на русском языке!


Наука Плоского Мира

Когда магический эксперимент выходит из-под контроля, волшебники Незримого Университета случайно создают новую Вселенную. Внутри они обнаруживают планету, которую называют Круглым Миром. Круглый Мир — это удивительное место, где логика берет верх над волшебством и здравым смыслом.Как Вы уже, наверное догадались, это наша Вселенная, а Круглый Мир — это Земля. Вместе с волшебниками, наблюдающими за развитием своего случайного творения, мы проследим историю Вселенной, начиная с исходной сингулярности Большого Взрыва и заканчивая эволюцией жизни на Земле и за ее пределами.Переплетая оригинальный рассказ Терри Пратчетта с главами, написанными Джеком Коэном и Йеном Стюартом, книга дает замечательную возможность посмотреть на нашу Вселенную глазами волшебников.


Наука Плоского Мира III: Часы Дарвина

Книга «Часы Дарвина» повествует о викторианском обществе, которого никогда не было — ну, однажды вмешались волшебники и его не стало..


Рекомендуем почитать
Переход через пропасть

Данная книга не просто «мемуары», но — живая «хроника», записанная по горячим следам активным участником и одним из вдохновителей-организаторов событий 2014 года, что вошли в историю под наименованием «Русской весны в Новороссии». С. Моисеев свидетельствует: история творится не только через сильных мира, но и через незнаемое этого мира видимого. Своей книгой он дает возможность всем — сторонникам и противникам — разобраться в сути процессов, произошедших и продолжающихся в Новороссии и на общерусском пространстве в целом. При этом автор уверен: «переход через пропасть» — это не только о событиях Русской весны, но и о том, что каждый человек стоит перед пропастью, которую надо перейти в течении жизни.


Десятилетие клеветы: Радиодневник писателя

Находясь в вынужденном изгнании, писатель В.П. Аксенов более десяти лет, с 1980 по 1991 год, сотрудничал с радиостанцией «Свобода». Десять лет он «клеветал» на Советскую власть, точно и нелицеприятно размышляя о самых разных явлениях нашей жизни. За эти десять лет скопилось немало очерков, которые, собранные под одной обложкой, составили острый и своеобразный портрет умершей эпохи.


Так говорил Бисмарк!

Результаты Франко-прусской войны 1870–1871 года стали триумфальными для Германии и дипломатической победой Отто фон Бисмарка. Но как удалось ему добиться этого? Мориц Буш – автор этих дневников – безотлучно находился при Бисмарке семь месяцев войны в качестве личного секретаря и врача и ежедневно, методично, скрупулезно фиксировал на бумаге все увиденное и услышанное, подробно описывал сражения – и частные разговоры, высказывания самого Бисмарка и его коллег, друзей и врагов. В дневниках, бесценных благодаря множеству биографических подробностей и мелких политических и бытовых реалий, Бисмарк оживает перед читателем не только как государственный деятель и политик, но и как яркая, интересная личность.


Тайна смерти Рудольфа Гесса

Рудольф Гесс — один из самых таинственных иерархов нацистского рейха. Тайной окутана не только его жизнь, но и обстоятельства его смерти в Межсоюзной тюрьме Шпандау в 1987 году. До сих пор не смолкают споры о том, покончил ли он с собой или был убит агентами спецслужб. Автор книги — советский надзиратель тюрьмы Шпандау — провел собственное детальное историческое расследование и пришел к неожиданным выводам, проливающим свет на истинные обстоятельства смерти «заместителя фюрера».


Октябрьские дни в Сокольническом районе

В книге собраны воспоминания революционеров, принимавших участие в московском восстании 1917 года.


Фернандель. Мастера зарубежного киноискусства

Для фронтисписа использован дружеский шарж художника В. Корячкина. Автор выражает благодарность И. Н. Янушевской, без помощи которой не было бы этой книги.