Жизнь на скорости света. От двойной спирали к рождению цифровой биологии - [5]

Шрифт
Интервал

.

Наука не только хочет понять природу – она хочет и поставить ее на службу человеку. Рене Декарт (1596–1650), первопроходец в оптике, которого мы все ассоциируем с фразой «Я мыслю, следовательно, существую», в «Рассуждении о методе» 1637 года также заглянул вперед – в тот день, когда человечество сможет стать «хозяином и господином природы». Декарт и его последователи распространили механистические объяснения природных явлений на биологические системы, а затем исследовали их приложения. С самого рождения этого великого дела, однако, критики выражали опасения, что в погоне за эффективным господством над природой будут забыты более важные моральные и философские проблемы. Вместе с фаустовым духом современной науки пришел спор о приемлемости для человечества «игры в Бога».

Для некоторых не было вопроса, что превосходным примером принятия роли божества было бы создание чего-нибудь живого в лаборатории. В своей книге «Природа и происхождение жизни: в свете новых знаний» 1906 года французский биолог и философ Феликс ле Дантек (1869–1917) обсуждает эволюцию – или «трансформизм», как ее называли в додарвиновских дискуссиях о том, как меняются виды, – современных видов от более ранних и простых организмов, «живой протоплазмы, сведенной к минимальной сумме наследственных признаков». Он писал: «Архимед высказал символическое утверждение, которое, если принять его буквально, абсурдно: „Дайте мне точку опоры, и я переверну Землю“. Примерно так же трансформист наших дней имеет право сказать: „Дайте мне живую протоплазму, и я воссоздам целиком животное и растительное царства“». Ле Дантек очень хорошо понимал, что теми примитивными методами, которые были у него в распоряжении, эту работу было бы трудно выполнить: «Наше знакомство с коллоидами [макромолекулами] еще столь недавнее и рудиментарное, что нам не стоит рассчитывать на скорый успех в попытках изготовить живую клетку». Ле Дантек был так уверен, что будущее принесет синтетические клетки, что говорил: «С новыми знаниями, полученными наукой, просвещенному разуму больше не нужно видеть изготовление протоплазмы для того, чтобы убедиться в отсутствии всякой существенной разницы и абсолютного разрыва между живой и неживой материей»{16}.

В предыдущем веке границу между одушевленным и неодушевленным провели химики, в том числе Йёнс Якоб Берцелиус (1779–1848), шведский ученый, который считается одним из пионеров современной химии. Берцелиус впервые применил атомную теорию к «живой» органической химии{17}, опираясь на работу французского отца химии Антуана Лавуазье (1743–1794) и других ученых. Он определил две крупных ветви химии как «органическую» и «неорганическую»; органические соединения – это те, которые отличаются от всех прочих тем, что включают в себя атомы углерода. В первый век применения термина «органический» он означал «происходящий от живого». Но примерно в то время, когда Берцелиус выдвинул эти определения, которые мы используем до сих пор, в своем влиятельном учебнике химии начала XIX века, виталисты и неовиталисты рассматривали органический мир еще более однозначно: «Органические вещества имеют по крайней мере три составляющие… они не могут быть приготовлены искусственно… но лишь через сродства, связанные с жизненной силой. Из этого ясно, что одни и те же правила неприменимы к органической и неорганической химии, так как здесь существенно влияние жизненной силы»{18}.

Немецкий химик Фридрих Вёлер (1800–1882), некоторое время работавший с Берцелиусом, совершил открытие, которое долго считалось «опровержением» витализма: химический синтез мочевины. В современных учебниках, в лекциях и статьях вы все еще найдете ссылки на его experimentum crucis. Это достижение стало знаковым моментом в научных анналах, отметив начало конца влиятельной идеи, восходящей к античности, – а именно, что есть некая «жизненная сила», которая отделяет одушевленное от неодушевленного, характерный «дух», который пропитывает все тела, чтобы дать им жизнь. Из заурядных химикатов Вёлер вроде бы создал кое-что от самой жизни – уникальный момент, полный возможностей. В единственном эксперименте он преобразовал химию – до тех пор разделенную на два раздельных царства молекул жизни и неживых химикатов – и увел иголку еще на один стежок прочь от предрассудков к науке. Его открытие пришло всего через десять лет после публикации готического романа Мэри Шелли «Франкенштейн», а тот появился всего через несколько лет после попытки Джованни Альдини (1762–1834) оживить казненного преступника электрическим шоком.

Вёлер объяснил свой успех в письме к Берцелиусу, датированном 12 января 1828 года{19}, описав случай, когда в Политехнической школе в Берлине он нечаянно создал мочевину, основной азотсодержащий компонент в моче млекопитающих. Вёлер пытался синтезировать щавелевую кислоту, содержащуюся в ревене, из циана и водного раствора аммиака и в итоге получил белую кристаллическую субстанцию. Аккуратно экспериментируя, он сделал точный анализ натуральной мочевины и показал, что это то же самое вещество, что и его кристаллы. До тех пор мочевину получали только из животных источников.


Еще от автора Крейг Вентер
Расшифрованная жизнь. Мой геном, моя жизнь

Крейг Вентер – один из ведущих ученых нашего времени, внесший огромный вклад в развитие геномики. В феврале 2001 года Вентер опубликовал полностью секвенированный геном человека. Его замечательные мемуары – честный, откровенный рассказ о своей жизни, в которой было и небогатое детство, и война во Вьетнаме, и общение с выдающимися учеными, научившими его любить науку и честно служить ей. «Расшифрованная жизнь» – еще и рассказ о том, как сегодня делаются открытия и как нелегко приходится тем, кто пытается отстаивать новое.


Рекомендуем почитать
Знание-сила, 1997 № 02 (836)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2008 № 10 (976)

Ежемесячный научно-популярный и научно-художественный журнал.


Физике становится тепло. Лорд Кельвин. Классическая термодинамика

Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.


Знание-сила, 2008 № 01 (967)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2006 № 04 (946)

Ежемесячный научно-популярный и научно-художественный журнал.


Во что мы верим, но не можем доказать

Книга о самых невероятных, оригинальных научно-фантастических идеях, которые в будущем, возможно, станут реальностью. О том, как самые разные ученые, оказывается, способны поверить в любые гипотезы и поведать всем нам о своих идеях, связанных с новыми областями эволюционной биологии, генетики, компьютерных наук, нейрофизиологии, психологии и физики…


Не все ли равно, что думают другие?

Эту книгу можно назвать своеобразным продолжением замечательной автобиографии «Вы, конечно, шутите, мистер Фейнман!», выдержавшей огромное количество переизданий по всему миру. Знаменитый американский физик рассказывает, из каких составляющих складывались его отношение к работе и к жизни, необычайная работоспособность и исследовательский дух. Поразительно откровенны страницы, посвященные трагической истории его первой любви. Уже зная, что невеста обречена, Ричард Фейнман все же вступил с нею в брак вопреки всем протестам родных.