Жизнь на грани - [109]
Стэнли Миллер, другой американский химик, участвовавший в проверке гипотезы Опарина — Халдейна, поступил в Университет Чикаго в качестве аспиранта в 1951 году, где занимался в первую очередь проблемами нуклеосинтеза элементов внутри звезд под руководством ученого Эдварда Теллера, известного как «отец водородной бомбы». Жизнь Миллера изменилась, когда в октябре 1951 года он посетил лекцию Гарольда Юри о происхождении жизни, в которой Юри обсуждал возможность реализации сценария Опарина — Холдейна и предполагал, что кто-то должен провести эксперименты. Очарованный идеей, Миллер перевелся из лаборатории Теллера в лабораторию Юри и принялся убеждать того стать его научным руководителем и позволить ему проводить эксперименты. Юри изначально скептически относился к полным энтузиазма студенческим планам Миллера по проверке теории Опарина — Халдейна: он прикидывал, что неорганическим химическим реакциям понадобились миллионы лет для генерации достаточного количества органических молекул, в то время как у Миллера будет всего три года, чтобы защитить кандидатскую! Тем не менее Юри был готов дать ему место и ресурсы, необходимые тому, на полгода-год. Таким образом, если эксперименты не дадут результатов, у Миллера еще будет время, чтобы перейти к более безопасному научно-исследовательскому проекту.
В своей попытке повторить условия, в которых возникла жизнь на Земле, Миллер имитировал первичную атмосферу, просто заполнив бутылку водой для имитации океана, добавил газы, которые, по его мнению, присутствовали в атмосфере: метан, водород, аммиак и водяной пар. Затем он смоделировал молнию, прокаливая смесь, которая начинала искрить. К собственному удивлению и ко всеобщему удивлению научного мира, Миллер обнаружил, что после всего недели действия искусственных молний на воссозданную первичную атмосферу в бутылке уже содержалось значительное количество аминокислот, строительных блоков для белков. Статья с описанием этого эксперимента была опубликована в журнале Science в 1953 году[169] — с Миллером в качестве единственного автора. Гарольд Юри занял очень необычную позицию, настаивая, чтобы честь открытия досталась целиком и полностью его аспиранту.
Эксперимент Миллера — Юри — как его обычно называют сегодня, несмотря на благородный жест Юри — был провозглашен первым шагом на пути создания жизни в лаборатории и остается очень важным событием в биологии. Несмотря на то что самовоспроизводящиеся молекулы не были получены в «первичном бульоне» Миллера, считалось, что аминокислоты полимеризовались бы с образованием пептидов и сложных белков и в конечном счете получились бы репликаторы Опарина — Холдейна, если бы было достаточно много времени и имелся достаточно большой объем.
С 1950-х годов десятки ученых повторяли эксперимент Миллера — Юри множеством способов с использованием различных смесей химических веществ, газов и разных источников энергии, чтобы получить не только аминокислоты, но и сахара и даже небольшие количества нуклеиновых кислот. И все же до сих пор (а прошло уже более полувека) ни одной лаборатории не удалось воссоздать «первичный бульон», который дал бы первичный репликатор Опарина — Халдейна. Чтобы понять почему, нам нужно более внимательно изучить эксперименты Миллера.
Первый момент — это сложность химической смеси, созданной Миллером. Большая часть полученного органического материала представляла собой сложные смолы наподобие тех, что хорошо знакомы химикам-органикам. Они часто видят такие вещества, когда их процедуры сложного химического синтеза нестрого контролируются и получаются побочные продукты. На самом деле легко приготовить аналогичную смолу на вашей собственной кухне, просто передержав ужин: та черновато-коричневая гадость, которую потом так трудно отмыть от дна кастрюли, довольно близка по составу к смоле Миллера. Проблема с такими химическими смесями в том, что они, как известно, не производят ничего больше, кроме такой же смолоподобной «гадости». С химической точки зрения их не назовешь «продуктивными» — они настолько сложны, что какие-то конкретные химические вещества, например аминокислоты, начинают взаимодействовать с таким количеством других различных соединений, что просто теряются в «лесу» непоследовательных химических реакций. Миллионы поваров, а также тысячи студентов-химиков производили подобные органические маслянистые смолы в течение многих столетий, однако результатом становилось лишь сложное мытье посуды.
От «гадости» к клеткам
Представьте себе, что, пытаясь приготовить первичный бульон, вы очищаете всю «гадость» со дна всех подгоревших кастрюль во всем мире, а затем растворяете все эти триллионы сложных органических молекул в океане. Теперь добавьте немного гренландских грязевых вулканов в качестве источника энергии и, возможно, искру молнии — и перемешайте. Как долго вы должны размешивать суп, прежде чем создадите жизнь? Миллион лет? Сто миллионов лет? Сто миллиардов лет?
Даже самая простая жизнь, такая как наша химическая «гадость», чрезвычайно сложна. В отличие от «гадости», однако, она также высоко-организованна. Проблема с использованием смол в качестве исходного материала для создания организованной жизни состоит в том, что случайные термодинамические силы, которые действовали на молодой Земле, — молекулярные движения, подобные движениям бильярдных шаров, о которых мы говорили в главе 2, — как правило, нарушают порядок, а не создают его. Вы бросаете курицу в кастрюлю с водой, нагреваете ее, перемешиваете, варите и получаете куриный бульон. Но вы не выливаете бульон из банки в кастрюлю в надежде получить курицу.
Фантастические масштабы и диапазон тем, которыми занимается современная физика, поражают воображение. Мы знаем, из чего состоит всё (или почти всё), что нас окружает, видим невидимое, исследуем связи всех кубиков мироздания, можем проследить эволюцию Вселенной чуть ли не с момента зарождения пространства и времени, а законы физики позволяют создавать технологии, которые меняют нашу жизнь. Всё, что окружает вас в настоящий момент, всё, что создало или построило человечество, стало реальностью благодаря нашему понимаю законов природы – сил, участвующих в формировании мира и свойств материи, на которую эти силы воздействуют.
В этой уникальной книге, посвященной бабочкам, рассматриваются как единое целое все стадии развития бабочки и весь окружающий микрокосмос, весь спектр взаимосвязей, из которых состоит жизненная среда этих насекомых. Известный немецкий художник Иоганн Брандштеттер в сотрудничестве с биологом Эльке Циппель показывают многообразие сред обитания бабочек – лугов с бедными почвами, верховых болот и болотных лугов, высокогорий, пойменных лесов, тундры, тайги, крайнего севера Евразии, влажных тропических лесов, опушек и лугов с высоким травостоем, пахотных полей и других, а также многообразие самих бабочек, предваряя рассказ кратким введением в основы систематики.
Академик АМН СССР рассказывает об иммунитете, силах, которые защищают наш организм от микробов, вирусов, раковых заболеваний, хранят неповторимую индивидуальность нашего телесного 'я', говорит о болезнях, возникающих при нарушении иммунитета и мерах борьбы с ними, а также об использовании клеток иммунной системы в биотехнологии (производстве лечебных и диагностических препаратов, сверхчувствительных реагентов), об использовании 'раковых клеток в мирных целях'. Издание рассчитано на самые широкие круги читателей.
Иммунология — наука о сохранении индивидуальности организма, о его иммунитете. Познание явлений иммунитета ведет к раскрытию тайн рождения и старения организмов, причин отторжения органов при их трансплантации и возникновения опухолей, к полной победе над инфекциями. О процессе этого познания, полного драматизма и парадоксов, и рассказывает автор книги. Она может быть полезна лекторам, пропагандистам, слушателям народных университетов естественнонаучных знаний и всем, кто интересуется современными проблемами биологии.
Расшифровка генетического кода, зашита от инфекционных болезней и патент на совершенную фиксацию азота, проникновение в тайну злокачественного роста и извлечение полезных ископаемых из морских вод — неисчислимы сферы познания и практики, где изучение микроорганизма помогает добиваться невиданных и неслыханных результатов… О достижениях микробиологии, о завтрашнем дне этой науки рассказывает академик АМН СССР О. Бароян.
Acacia mangium — это быстрорастущее тропическое вечнозеленое дерево, которое при благоприятных условиях может вырасти до 30 м в высоту и до 50 см в толщину. Низинный вид, связанный с окраинами тропических лесов и нарушенными, хорошо дренированными кислыми почвами. Аборигенное растение для Папуа, Западной Ириан-Джайи и Молуккских островов в Индонезии, Папуа-Новой Гвинеи и северо-восточной части Квинсленда в Австралии. Из-за быстрого роста и устойчивости к очень бедным почвам A. mangium была завезена в некоторые страны Азии, Африки и западного полушария, где она используется в качестве плантационного дерева.
«Ой, фу!» Табу в нашем мире живут столько же, сколько существует общество. Все мы стремимся быть ухоженными, хорошо пахнуть, но стоит нам остаться наедине с самим собой, как наше тело начинает жить собственной жизнью: палец сам тянется к ноздре – избавиться от накопившегося содержимого, нос – понюхать собственную кожу на предмет чужеродных запахов, а живот… Живот спешит скорее «выдохнуть» все, что копил в себе целый день. Все это – естественно, но мы упорно продолжаем этого стесняться. А стеснение нередко приводит к неприятным казусам в повседневности, личной жизни и даже к проблемам со здоровьем.
Наше происхождение началось не на Земле, а, на самом деле, в космосе. Основываясь на научных открытиях и исследованиях, где пересекаются несколько наук — геология, биология, астрофизика и космология, — вы узнаете, как сформировались наши знания о космосе. В этой книге Нил Деграсс Тайсон и Дональд Голдсмит отправят вас в космический тур, где вы узнаете о рождении галактики, исследованиях Марса, об открытии воды на одной из лун Юпитера и многое другое.
Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни. Книга «Вечность.
«Карло Ровелли – это человек, который сделал физику сексуальной, ученый, которого мы называем следующим Стивеном Хокингом». – The Times Magazine Что есть время и пространство? Откуда берется материя? Что такое реальность? «Главный парадокс науки состоит в том, что, открывая нам твердые и надежные знания о природе, она в то же время стремительно меняет ею же созданные представления о реальности. Эта парадоксальность как нельзя лучше отражена в книге Карло Ровелли, которая посвящена самой острой проблеме современной фундаментальной физики – поискам квантовой теории гравитации. Упоминание этого названия многие слышали в сериале “Теория Большого взрыва”, но узнать, в чем смысл петлевой гравитации, было почти негде.
Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей. Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени. Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались.