Жизнь и ее проявления - [3]

Шрифт
Интервал

Большое внимание уделил К. А. Тимирязев изучению хлорофилла. По своим химическим свойствам он сходен с гемоглобином крови человека и других высших животных. Но в молекуле гемоглобина содержится железо, а в молекуле хлорофилла — магний.

В наши дни известно не только сложное строение хлорофилла, но и произведен его искусственный синтез. Установлено также, что хлорофилл, взятый сам по себе, не способен к фотосинтезу. Этот процесс может протекать только в живой клетке листа и других зеленых частей растений.

Фотосинтез — процесс очень сложный и многоступенчатый. Его изучению посвящено огромное количество работ ученых разных стран мира. И только в последние годы с появлением биоэнергетики — науки, изучающей энергетические процессы в организме, стало возможным расшифровать основные этапы этого процесса.

Мы уже отметили, что источником энергии в организме растений является свет. В результате фотосинтеза в зеленом листе растения образуется вещество аденозинтрифосфорная кислота (АТФ), которая выполняет функцию аккумулятора (накопителя) химической энергии. Для расшифровки энергетических процессов в клетке был применен биофизический подход. При таком подходе исходят из того, что всякая химическая энергия — это энергия электронов, занимающих самые высшие орбиты в молекуле. Накопление энергии молекулой прямо или косвенно связано с подъемом электрона на орбиту, более удаленную от ядра. Спуск электрона на нижнюю орбиту сопровождается выделением энергии, которая может быть превращена в работу. Чем выше уровень (то есть чем дальше электронная орбита от ядра), тем большую энергию имеет находящийся там электрон. В обычных условиях электроны занимают нижние орбиты.

В брошюре «Три тайны жизни» сообщалось, что хлорофилл содержится в органоидах клеток зеленых органов растений и что органоиды эти называются хлоропластами.

Итак, как же протекает фотосинтез?

Начинается он с того, что хлорофилл, содержащийся в хлоропластах зеленых листьев, поглощает (сенсибилизирует) кванты световой энергии. В результате фотосенсибилизации молекула хлорофилла приходит в возбужденное состояние и на ее орбите образуется электронная вакансия, которая может быть заполнена за счет присоединения электрона соседней молекулы. В итоге, как было показано советским ученым А. А. Красновским, образуется весьма активное соединение — фотовосстановленный хлорофилл, который может отдать электрон другим веществам, то есть восстановить их. В конечном счете из таких окисленных продуктов — углекислого газа и воды — под воздействием света образуются восстановленные соединения — углеводы и жиры. Если выразить сказанное химическими знаками, то суммарная конечная формула фотосинтеза будет такова: 6СО>2 + 6Н>2О + световая энергия = С>6H>12O>6 + 6O>2. При этой реакции на образование одного моля глюкозы (180 г) расходуется 674 килокалории световой энергии.

Фотосинтез на примере свеклы: поглощая световую энергию, зеленые растения создают с ее помощью из углекислого газа (СО>2), воды (Н>2O) и минеральных солей (NPK) богатые энергией органические вещества.


В созданных в процессе фотосинтеза углеводах, жирах и белках запасена химическая энергия, то есть энергия поднятого электрона. Эта энергия имеет световую природу.

Пользуясь очень тонкими методами исследований, советский ученый А. П. Виноградов установил, что освобождающийся при фотосинтезе кислород (О>2) получается не из углекислого газа, как это думали раньше, а образуется при расщеплении воды под действием света. Это явление получило название фотолиза воды. При этом водород воды идет на восстановление углекислоты и в конечном счете на образование углеводов.

Синтетические способности растительных клеток, конечно, не исчерпываются образованием углеводов. В тесной связи с фотосинтезом, а также с общим комплексом биохимических реакций обмена веществ в растительной клетке идут синтезы аминокислот, белков, жиров и других органических соединений.

По новейшим данным, фотосинтез состоит из ряда сложных реакций. Вначале происходит фотолиз воды с выделением кислорода и связыванием водорода хлорофиллом.

Для осуществления фотосинтеза растениям необходимы огромные массы воздуха, так как воздух содержит всего 0,03 процента углекислого газа (СО>2). Чтобы растению получить 3 кубических метра СО>2 (около 6 кг), оно должно пропустить через устичный аппарат своих листьев около 10 000 кубических метров воздуха. Растения лучше и быстрее растут, если воздух содержит большое количество углекислого газа. Однако повышение концентрации углекислого газа в воздухе, положим, до 0,3 процента губительно действует на животных и человека. Чтобы ускорить рост растений и получить от них больше урожай, строят специальные вегетационные домики, где повышают содержание СО>2 в атмосфере от 1 до 5 процентов. Обычно в таких домиках выращивают ранние овощи.

В настоящее время подсчитано, что ежегодно все зеленые растения земного шара синтезируют до 100–150 миллиардов тонн органических веществ. При этом большую часть (около 2/3) органических веществ синтезируют водные, а не наземные растения.

Среди водных растений наиболее активным фотосинтезом обладают водоросли. Некоторые одноклеточные водоросли, например хлорелла, при благоприятных условиях фотосинтеза благодаря быстрому росту и размножению могут увеличивать общий вес и число клеток в семь и более раз в сутки. Цикл жизни у нее определяется восемью часами. Таким образом, за сутки могут завершить жизнь три поколения, дав начало четвертому. Одноклеточные водоросли ценны в том отношении, что они, легко культивируясь на искусственных питательных растворах, синтезируют в большом количестве различные органические вещества и многие витамины. Хлорелла, например, содержит в сухом веществе до 50 процентов белка, 25 процентов жира, 15 процентов углеводов и 10 процентов минеральных солей; кроме того, в ее состав входят важнейшие витамины «А», «В» и «С». В настоящее время в Советском Союзе, США, Японии и других странах хлорелла и некоторые другие планктонные водоросли культивируются в больших масштабах в экспериментальных установках полупроизводственного характера. В благоприятных условиях, то есть при оптимальном температурном режиме, достаточном освещении и высокой концентрации углекислого газа, хлорелла может создавать большое количество органических веществ: за сутки до одного центнера в пересчете на один гектар.


Еще от автора Владимир Иванович Фурсов
Так начиналась биология

Биология — наука о жизни. Знания о ней человечество накапливало по крупицам с древнейших времен. Преодолевая недоверие, предрассудки, терпя гонения со стороны духовенства, ученые шаг за шагом проникали в тайны природы.Автор предлагаемой брошюры сквозь горнило войны с фашизмом пронес громадную любовь к жизни, неистребимую жажду знания. Он видел смерть своих товарищей по оружию, не раз сам оказывался на волосок от гибели. Он видел, как фашисты, на ременных пряжках у которых было написано: «С нами бог», убивали мирных жителей сел и городов, стариков и детей.


Три тайны жизни

В серии «Ученые беседуют с верующими» мы освещаем важнейшие события в жизни различных наук. Ряд брошюр посвящен биологической науке. В брошюре того же автора «Так начиналась биология» речь шла о развитии этой науки до Ч. Дарвина. В предлагаемой брошюре сообщается о трех этапных открытиях в биологии, в частности, первая глава посвящена Ч. Дарвину, труды которого составили целую эпоху и вооружили естествоиспытателей истинно научным методом изучения природы. О сущности жизни и поступательном развитии живой природы будет рассказано в следующих брошюрах.


Путь длиною в миллионы лет

С давних времен человечество стремится разгадать загадку своего происхождения. В предлагаемой брошюре прослеживается длительный путь эволюционного развития и становления современного человека, рассказывается о достижениях биологических наук и прежде всего антропологии, благодаря которым мы можем заглянуть в глубь своей истории на десятки миллионов лет.Книжка написана ясным языком, хорошо иллюстрирована и адресуется самым широким читательским массам.Автор — доктор биологических наук, профессор В. И. Фурсов — уже знаком читателям по ряду брошюр, в которых в популярной форме излагались основы естествознания.Этой брошюрой мы по просьбе читателей возобновляем серию «Ученые беседуют с верующими».


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Религия и психические болезни

Что собою представляют психические болезни? Какие бывают расстройства психики и как они протекают? Какие причины вызывают нарушения психической деятельности человека? Как религиозность влияет на психику верующего? Ответы на эти и ряд других вопросов содержатся в предлагаемой книге.