Жизнь Георга Кантора - [8]
В особенности следует отметить начало статьи [17]. Здесь приводится известное определение множества, заметно отличающееся от предыдущих (ср. также часть 1 работы «К учению о трансфинитном»), а затем вводится понятие мощности в смысле только что указанной работы − как общего понятия, возникающего из множества при двойной абстракции, от природы элементов и от порядка их задания; таким образом, понятие мощности уже не определяется через эквивалентность, как в [13]. За надлежащим образом видоизмененными определениями упорядочения по величине и мощностей следует отчетливое замечание, что «сравнимость» не самоочевидна и не может быть доказана в этом месте построения; автор обещает доказать теорему о сравнимости в дальнейшем и указывает, что «теорема эквивалентности» будет вытекать из нее как следствие.
4. Старость и признание
В 1897 году завершается публикация работ 52-летнего в то время исследователя. Тогда же начинается все возрастающее признание его труда математическим миром.
Прекращение научной продукции вовсе не означает, что он перестал интенсивно заниматься теорией множеств. Применениям в теории функций действительного переменного он уделял мало внимания, более ожидая вторжения методов теории множеств в классический анализ и в теорию чисел. В центре же его интересов по-прежнему находилась проблема континуума. Об его усилиях в этом направлении, кроме волнующего эпизода в 1904 г., говорит также переписка с Дедекиндон летом 1899 г. Эти последние дошедшие до нас обрывки переписки, отделенные от предыдущих почти двадцатилетним промежутком, начинаются с утверждения Кантора, что с 1897 г. он располагает доказательством теоремы, в силу которой все мощности суть алефы. Дело заключалось в следующем.
Не позже 1895 г., т. е. за два года до публикации Бурали-Форти, Кантор сам столкнулся с так называемым парадоксом Бурали-Форти, касающимся множества всех порядковых чисел, и в 1896 г. сообщил о нем Гильберту[23]. Далее, в 1899 г. он пишет Дедекинду также о других противоречивых системах, например, о совокупности всех мощностей или всего мыслимого, и называет их «неконсистентными» (или «абсолютно бесконечными») системами. В противоположность этому, система может рассматриваться как множество, «если совокупность элементов некоторого разнообразия непротиворечивым образом мыслима как совместно существующая»[24]. Парадокс, возникающий из множества всех порядковых чисел, по мнению Кантора как раз и означает, что существуют «некоторые разнообразия, не мыслимые также в виде однообразия». Опираясь на эти не особенно ясные понятия, он утверждает далее, что эквивалентные разнообразия одновременно являются множествами или неконсистентны, и что подразнообразие множества есть снова множество. Дальше он рассуждает следующим образом. Пусть W − система всех порядковых чисел, V − разнообразие, не имеющее в качестве мощности никакого алефа; тогда легко видеть, что «вся система W проектируется в разнообразие V» т. е. V должно содержать подразнообразие, эквивалентное W; и если, таким образом, V вообще имеет определенную мощность, то она должна быть алефом. Как мало это «доказательство» удовлетворяло его самого, видно из того, что он вскоре обратился с просьбой к Дедекинду дать с помощью его теории цепей «прямое» доказательство сравнимости. Таким образом, с 1884 года до смерти Кантора нерешенная проблема континуума упорно его беспокоила, временами вызывая у него даже сомнение, состоятельна ли теория множеств как научное построение в ее нынешнем виде.
В перегоняющих друг друга письмах, относящихся к периоду успешной деятельности Кантора (1899 г.), содержатся и другие вещи, заслуживающие упоминания.
Так, 29 августа Дедекинд сообщает другу доказательство эквивалентности с помощью своей теории цепей, на возможность которого он уже весной 1897 г. указывал Ф. Берштейну[25]. Далее, Кантор формулирует известную альтернативу относительно возможных отношений эквивалентности между двумя множествами M и N: каждое из них либо эквивалентно некоторому подмножеству другого, либо не эквивалентно никакому из них; таким образом, имеется четыре мыслимых комбинации (одна из которых, соответствующая «несравнимости», была позже исключена в силу теоремы о полной упорядоченности). Этот метод, сейчас для нас почти самоочевидный, до тех пор не встречался в работах Кантора; по рассказу Шенфлиса[26], письмо, в котором Кантор сообщил его в Геттинген, было там воспринято как откровение и переходило из рук в руки. Наконец, в тех же письмах Кантора утверждения о существовании множеств (т. е. консистентных разнообразий) с кардинальными числами объявляются аксиомами элементарной, соответственно, расширенной арифметики; это вполне соответствует духу впоследствии построенной Расселом теории “individuals” («индивидуумов»).
В том же 1897 г., когда вышла последняя работа Кантора, в Цюрихе состоялся первый «Международный математический конгресс». Он встретил на конгрессе единодушное признание; наряду с секционным сообщением Адамара, использовавшего понятия теории множеств как уже известные и необходимые орудия, доклад Гурвица на первом пленарном заседании «О развитии общей теории аналитических функций в новейшее время» особенно ярко продемонстрировал, насколько плодотворными оказались для теории функций идеи Кантора и среди них столь оспаривавшиеся трансфинитные числа. Надо отметить, что три уже тогда ведущих исследователя, Гильберт, Гурвиц и Минковский, состоявшие между собой в дружбе, первые в странах немецкого языка поняли и пытались разъяснить оригинальность идей Кантора и значение его теории множеств; было это еще «в то время, когда в задававших тогда тон математических кругах самое имя Кантора было под запретом, а в его трансфинитных числах видели всего лишь вредные порождения фантазии»
Впервые в науке об искусстве предпринимается попытка систематического анализа проблем интерпретации сакрального зодчества. В рамках общей герменевтики архитектуры выделяется иконографический подход и выявляются его основные варианты, представленные именами Й. Зауэра (символика Дома Божия), Э. Маля (архитектура как иероглиф священного), Р. Краутхаймера (собственно – иконография архитектурных архетипов), А. Грабара (архитектура как система семантических полей), Ф.-В. Дайхманна (символизм архитектуры как археологической предметности) и Ст.
Серия «Новые идеи в философии» под редакцией Н.О. Лосского и Э.Л. Радлова впервые вышла в Санкт-Петербурге в издательстве «Образование» ровно сто лет назад – в 1912—1914 гг. За три неполных года свет увидело семнадцать сборников. Среди авторов статей такие известные русские и иностранные ученые как А. Бергсон, Ф. Брентано, В. Вундт, Э. Гартман, У. Джемс, В. Дильтей и др. До настоящего времени сборники являются большой библиографической редкостью и представляют собой огромную познавательную и историческую ценность прежде всего в силу своего содержания.
Атеизм стал знаменательным явлением социальной жизни. Его высшая форма — марксистский атеизм — огромное достижение социалистической цивилизации. Современные богословы и буржуазные идеологи пытаются представить атеизм случайным явлением, лишенным исторических корней. В предлагаемой книге дана глубокая и аргументированная критика подобных измышлений, показана история свободомыслия и атеизма, их связь с мировой культурой.
Макс Нордау"Вырождение. Современные французы."Имя Макса Нордау (1849—1923) было популярно на Западе и в России в конце прошлого столетия. В главном своем сочинении «Вырождение» он, врач но образованию, ученик Ч. Ломброзо, предпринял оригинальную попытку интерпретации «заката Европы». Нордау возложил ответственность за эпоху декаданса на кумиров своего времени — Ф. Ницше, Л. Толстого, П. Верлена, О. Уайльда, прерафаэлитов и других, давая их творчеству парадоксальную характеристику. И, хотя его концепция подверглась жесткой критике, в каких-то моментах его видение цивилизации оказалось довольно точным.В книгу включены также очерки «Современные французы», где читатель познакомится с галереей литературных портретов, в частности Бальзака, Мишле, Мопассана и других писателей.Эти произведения издаются на русском языке впервые после почти столетнего перерыва.
В книге представлено исследование формирования идеи понятия у Гегеля, его способа мышления, а также идеи "несчастного сознания". Философия Гегеля не может быть сведена к нескольким логическим формулам. Или, скорее, эти формулы скрывают нечто такое, что с самого начала не является чисто логическим. Диалектика, прежде чем быть методом, представляет собой опыт, на основе которого Гегель переходит от одной идеи к другой. Негативность — это само движение разума, посредством которого он всегда выходит за пределы того, чем является.
В монографии на материале оригинальных текстов исследуется онтологическая семантика поэтического слова французского поэта-символиста Артюра Рембо (1854–1891). Философский анализ произведений А. Рембо осуществляется на основе подстрочных переводов, фиксирующих лексико-грамматическое ядро оригинала.Работа представляет теоретический интерес для философов, филологов, искусствоведов. Может быть использована как материал спецкурса и спецпрактикума для студентов.