Жизнь 3.0. Быть человеком в эпоху искусственного интеллекта - [32]

Шрифт
Интервал

Мы обнаружили, что класс функций, с которыми нас познакомили законы физики и которые, собственно, и заставили нас заинтересоваться вычислениями, – это удивительно узкий класс функций, потому что по причинам, которые мы все еще не полностью понимаем, законы физики удивительно просты. Более того, крошечная часть функций, которую могут вычислить нейронные сети, очень похожа на ту крошечную часть, интересоваться которыми нас заставляет физика! Мы также продолжили предыдущую работу, показывающую, что нейронные сети глубокого обучения (слово “глубокое” здесь подразумевает, что они содержат много слоев) гораздо эффективнее, чем мелкие, для многих из этих функций, представляющих интерес. Например, вместе с еще одним удивительным студентом MIT, Дэвидом Ролником, мы показали, что простая задача перемножения n чисел требует колоссальных 2>n нейронов для сети с одним слоем и всего лишь около 4n нейронов в глубокой сети. Это помогает объяснить не только возросший энтузиазм среди исследователей AI по отношению к нейронным сетям, но также и то, зачем эволюции понадобились нейронные сети у нас в мозгу: если мозг, способный предвидеть будущее, дает эволюционное преимущество, в нем должна развиваться вычислительная архитектура, пригодная для решения именно тех вычислительных задач, которые возникают в физическом мире.

Теперь, когда мы знаем, как нейронные сети работают и как вычисляют, давайте вернемся к вопросу о том, как они могут учиться. В частности, как может нейронная сеть улучшать свои вычислительные способности, обновляя состояние своих синапсов.

Канадский психолог Дональд Хебб в своей книге 1949 года The Organization of Behavior, вызвавшей живой отклик, утверждал, что если бы два соседних нейрона часто оказывались активны (“светились”) одновременно, то их синаптическая связь усиливалась бы, обучая их включать друг друга – эта идея нашла отражение в популярной присказке “Связаны вместе, светятся вместе”. Хотя до понимания в подробностях, как именно происходит обучение в настоящем мозгу, нам еще далеко, и исследования показывают, что ответы во многих случаях должны будут далеко выходить за рамки простых предложенных правил вроде того, что стало известно как “обучение по Хеббу”, даже эти простые правила, тем не менее, способны объяснить, каким образом происходит обучение нейронных сетей во многих интересных случаях. Джон Хопфилд ссылался на обучение по Хеббу, которое позволило его исключительно простой искусственной нейронной сети сохранить много сложных воспоминаний путем простого повторения. Такое экспонирование информации в целях обучения обычно называют “тренировкой”, когда речь идет об искусственных нейронных сетях (а также о животных или о людях, которым надо приобрести определенный навык), хотя слова “опыт”, “воспитание” или “образование” тоже подходят. В искусственных нейронных сетях, лежащих в основе современных систем AI, обучение по Хеббу заменено, как правило, более сложными правилами с менее благозвучными названиями, такими как обратное распространение ошибки (backpropagation) или спуск по стохастическому градиенту (stochastic gradient descent), но основная идея одна и та же: существует некоторое простое детерминированное правило, похожее на закон физики, с помощью которого синапсы со временем обновляются. Словно по волшебству, пользуясь этим простым правилом, нейронную сеть можно научить чрезвычайно сложным вычислениям, если задействовать при обучении большие объемы данных. Мы пока еще не знаем точно, какие правила использует при обучении наш мозг, но, каков бы ни был ответ, нет никаких признаков, что эти правила нарушают законы физики.

Большинство цифровых компьютеров увеличивают эффективность своей работы, разбивая задачу на много шагов и многократно используя одни и те же вычислительные модули, – искусственные и биологические нейронные сети поступают аналогично. В мозгу есть области, представляющие собой то, что в информатике принято называть рекуррентными нейронными сетями: информация внутри них может протекать в различных направлениях, и то, что на предыдущем такте служило выходом, может стать входом в последующем – в этом их отличие от сетей прямой передачи. Сеть логических гейтов в микропроцессоре ноутбука также рекуррентна в этом смысле: она продолжает использовать уже обработанную информацию, позволяя в то же время вводить новую – с клавиатуры, трекпада, камеры и т. п., которой также позволяется влиять на текущие вычисления, а это, в свою очередь, определяет, как будет осуществляться вывод информации: на монитор, динамики, принтер или через беспроводную сеть. Аналогично нейронная сеть в вашем мозгу рекуррентна, поскольку получает информацию от ваших глаз, ушей и других органов чувств и позволяет этой информации влиять на текущее вычисление, которое, в свою очередь, определяет, как будет производиться вывод результатов к вашим мышцам.

История обучения по крайней мере столь же длинна, как и история самой жизни, поскольку каждый самовоспроизводящийся организм так или иначе производит копирование и обработку информации, то есть как-то себя ведет, чему ему надо было каким-то образом научиться. Однако в эпоху Жизни 1.0 организмы не учились в течение своей жизни: способы обработки информации и реакции на нее определялись унаследованной организмом ДНК, поэтому обучение происходило медленно, на уровне видов, через дарвиновскую эволюцию от поколения к поколению.


Еще от автора Макс Тегмарк
Наша математическая вселенная. В поисках фундаментальной природы реальности

Галилео Галилей заметил, что Вселенная – это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведет за собой через бесконечное пространство и время – от микрокосма субатомных частиц к макрокосму Вселенной.


Наша математическая вселенная

Галилео Галилей заметил, что Вселенная — это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведёт за собой через бесконечное пространство и время — от микрокосма субатомных частиц к макрокосму Вселенной.


Рекомендуем почитать
Пурпурный. Как один человек изобрел цвет, изменивший мир

Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.


Индивидуальный и общественный гомеостазис

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Безопасность на воде и оказание помощи пострадавшим

В издании изложены основные действия по оказанию помощи пострадавшим на воде. Дана характеристика видов утопления, способов выполнения искусственного дыхания, непрямого массажа сердца и мер по предупреждению несчастных случаев.Предназначено для широкого круга читателей, а также может быть использовано инструкторами, методистами, работающими с детьми и взрослыми в условиях, связанных с водной средой.


Атлантиды ищите на шельфе

Обширные районы нынешнего шельфа Охотского, Берингова, Черного и многих других морей были еще шесть — десять тысяч лет назад сушей, на которой обитали люди. На шельфе же находятся и руины затонувших городов и поселений, ушедших под воду не только в эпоху античности и средневековья, но и в Новое время. Об этих реальных, а не гипотетических «атлантидах» и рассказывает заключительная книга трилогии, посвященной «новым атлантидам».


Затаенное имя - Тайнопись в 'Слове о полку Игореве'

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Алфавитно-предметный указатель к систематическому каталогу

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Приспособиться и выжить!

В своей книге американский биолог, крупнейший специалист по эволюционной биологии развития (эво-дево) Шон Кэрролл понятно и увлекательно рассказывает о том, как эволюция и работа естественного отбора отражаются в летописи ДНК. По его собственным словам, он приводит такие доказательства дарвиновской теории, о которых сам Дарвин не мог и мечтать. Генетические исследования последних лет показывают, как у абсолютно разных видов развиваются одни и те же признаки, а у родственных — разные; каким образом эволюция повторяет сама себя; как белокровные рыбы научились обходиться без гемоглобина, а колобусы — переваривать растительную пищу как жвачные животные.


Вопрос жизни

Почему мы стареем и умираем? Зачем нужно половое размножение? И почему полов два, а не больше? У известного английского биохимика есть ответы и на эти вопросы, но главное – он предлагает неожиданный подход к основным проблемам биологии: как из камней, воды и воздуха появилась жизнь.


В поисках памяти

В этой книге, посвященной истории возникновения и развития науки о биологической основе человеческой психики, Эрик Кандель разъясняет революционные достижения современной биологии и проливает свет на то, как бихевиоризм, когнитивная психология и молекулярная биология породили новую науку. Книга начинается с воспоминаний о детстве в оккупированной нацистами Вене и описывает научную карьеру Канделя, от его раннего увлечения историей и психоанализом до новаторских работ в области изучения клеточных и молекулярных механизмов памяти, за которые он удостоился Нобелевской премии.


Расстроенная психика. Что рассказывает о нас необычный мозг

Все решения и поступки зарождаются в нашей психике благодаря работе нейронных сетей. Сбои в ней заставляют нас страдать, но порой дарят способность принимать нестандартные решения и создавать шедевры. В этой книге нобелевский лауреат Эрик Кандель рассматривает психические расстройства через призму “новой биологии психики”, плода слияния нейробиологии и когнитивной психологии. Достижения нейровизуализации, моделирования на животных и генетики помогают автору познавать тайны мозга и намечать подходы к лечению психических и даже социальных болезней.