Живые часы - [15]
Рис. 9. Горшок с Phaseolus multiflorus в перевернутом положении. У черешков первой пары листьев, фиксированных проволокой (а), изгибаться может только листовая подушечка у основания пластинки. Лист 1 принял дневное положение, а лист 2 показан так, как если бы он находился в ночном положении. Листочки трехлопастного листа 3, выполняя нормальные суточные движения, приняли дневное положение за счет искривления отделительного сочленения.
Рис. 10. Осмотическое давление в клетке кончика корешка кукурузы (увеличена в 250 раз), может достигать более 7 килограммов на квадратный сантиметр.
Но как же Пфефферу удавалось изучать действие клеточной мембраны при ограниченных возможностях лабораторного оборудования восьмидесятых годов прошлого века? Возьмем, к примеру, перенос веществ через клеточные мембраны корешков кукурузы. Размеры этих клеток настолько малы, что, даже увеличенные в 150 раз, едва достигнут одного сантиметра. Работать с таким мелким объектом с помощью доступных в то время методов было невозможно. И Пфефферу пришлось изобретать то, что наиболее близко могло бы имитировать мембрану клетки. В сущности, ему нужна была мембрана, проницаемая для мелких молекул, таких, как молекулы воды, и непроницаемая для молекул более крупных, как, например, молекулы сахара.
Может быть, подойдет ферроцианид меди, который использовал немецкий химик Траубе при изготовлении своих клеток — ячеек? Это вязкое коричневое вещество похоже на густой раствор желатина. В качестве механической опоры Пфеффер воспользовался сосудиками из необожженной пористой глины, которые «после максимально тщательного промывания» пропитывались раствором либо хлористой, либо уксуснокислой меди, затем промывались дистиллированной водой и подвешивались в растворе ферроцианида калия. Таким путем Пфеффер добивался образования исключительно тонкой пленки студенистого ферроцианида меди внутри пор глиняного сосуда. Наконец, сосудики многократно отмачивались в нескольких сменах дистиллированной воды для удаления всех следов не выпавших в осадок растворимых солей.
Оставалось узнать, действуют ли эти «мембраны» подобно мембранам живых клеток. Налив в один из сосудиков раствор сахара, ученый погрузил его в сосуд с дистиллированной водой. И вдруг, к своему неописуемому восторгу, он заметил, что уровень жидкости в сосудике начал медленно подниматься: втягивалась вода, находящаяся в нижнем сосуде. А как же сахар? Проходил ли он через мембрану вниз, в дистиллированную воду? Стала ли она сладкой? Трудно себе представить, чтобы Пфеффер не попробовал ее на вкус. Он не написал об этом. В любом случае за его первыми попытками последовала большая серия экспериментов, окончательно доказавших, что мембрана пропускает чистую воду, но препятствует прохождению сахара. Пфефферу удалось получить мембрану, которая работала, как мембрана живых клеток. При этом техника изготовления таких мембран была настолько простой, что он мог получать их в любом количестве.
Следующей задачей ученого было измерить силу, которая заставляет чистую воду проходить через мембрану в раствор сахара. Пришло время перейти от качественных наблюдений к количественным.
Для количественных измерений потребовалось всего лишь очень простое дополнение к его сосудам. Их отверстия он заткнул пробками, в которые предварительно вставил стеклянные трубки. Теперь вода, втягиваемая в сосуд, поднималась по трубке до тех пор, пока осмотическое давление раствора не компенсировалось весом столба жидкости в трубке.
Пфеффер провел целую серию экспериментов, постепенно увеличивая концентрацию сахара в исходных растворах и измеряя высоту, на которую поднимались растворы в стеклянных трубках. Оказалось, что, чем большей была концентрация сахара в исходном растворе, тем выше поднимался столб жидкости. На графике зависимости высоты столба жидкости от концентрации сахара в растворе точки, соответствующие результатам измерений, выстраивались в прямую линию. Так было окончательно доказано, что осмотическое давление раствора прямо пропорционально концентрации растворенного вещества. Современные ученые полагаются на это количественное соотношение в своей повседневной работе как на нечто само собой разумеющееся. Да и те, кто работает в наше время в области клеточной физиологии, понимают работу внутренних механизмов клетки значительно глубже, чем Пфеффер. Но, как сказал Исаак Ньютон: «Если я и видел дальше… то стоя на плечах гигантов».
Рис. 11. Простой прибор, очень похожий на тот, которым пользовался Вильгельм Пфеффер, чтобы измерить осмотическое давление в растворе сахара.
В конце лета 1884 года профессор химии Рижского политехнического училища (в будущем известный физико-химик) Вильгельм Оствальд взошел на корабль, направлявшийся в Стокгольм. У него была диссертация молодого шведа по имени Сванте Аррениус, которую он считал блестящей. По его мнению, труд Аррениуса недооценили в Упсальском университете. Хотя Аррениусу и присудили докторскую степень (под аккомпанемент традиционного пушечного салюта), его работу классифицировали как труд «четвертого класса».
При делении клеток организма, часть генетического материала теряется. Статья (в популярной форме, на уровне знаний по биологии даваемых в средней школе) рассказывает об открытии механизма защиты хромосом при репликации. Это открытие объясняет механизм старения клеток, возникновение раковых опухолей, и, возможно, может пролить свет на процесс старения организма.
Широко известный чешский археолог рассказывает в научно-популярной книге о «детстве» человечества, его древних обиталищах — пещерах, о той роли, которую они играли в жизни древнего человека, о сохранившихся до наших дней исторических пещерных памятниках, их изучении и сохранении.Книга рассчитана на массового читателя.
«Счастье, если в детстве у нас хороший слух: если мы слышим, как красота, любовь и бесполезность громко славят друг друга каждую минуту, из каждого уголка мира природы», — пишет американская писательница Шарман Эпт Рассел в своем «Романе с бабочками». На страницах этой элегантной книги все персонажи равны и все равно интересны: и коварные паразиты-наездники, подстерегающие гусеницу, и бабочки-королевы, сплетающиеся в восьмичасовом постбрачном полете, и английская натуралистка XVIII столетия Элинор Глэнвилль, которую за ее страсть к чешуекрылым ославили сумасшедшей, и американский профессор Владимир Набоков, читающий лекцию о бабочках ошарашенным студентам-славистам.
Давайте совершим путешествие вместе с наукой в далёкое прошлое, чтобы прийти к тому времени, когда зарождалась жизнь на Земле, и узнать, как это совершалось. От такого путешествия станет крепче уверенность в силе науки, в силе человеческого разума, в нашей собственной силе.
Эта книга написана крупным западногерманским специалистом по гидропонике – методу выращивания растений без почвы – для всех тех, кто занимается или хочет заниматься выращиванием цветов и овощей в течение круглого года. Новый метод позволяет с равным успехом выращивать растения на окнах комнаты, на балконе или под открытым небом – на приусадебном участке или в специализированном хозяйстве с гораздо меньшими затратами труда и с большей уверенностью в успехе, чем при обычной культуре на почве. В книге описаны доступные для всех без исключения способы выращивания растений на питательных растворах и на разнообразных средах, увлажняемых этими растворами.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В предлагаемой вниманию читателей книге американского популяризатора О. О. Байндера в общедоступной форме рассказывается о многочисленных космических загадках. Некоторые из них уже «с бородой», другие связаны с открытиями последних лет.
В этой книге затронут широкий круг проблем, связанных с биологией человека, — его место в природе, биологические и социальные особенности, закономерности его индивидуального и исторического развития, взаимоотношения с окружающей средой.Автор касается и многих других сторон человеческого бытия, которые приобрели в наши дни большую социальную и политическую значимость.Книга хорошо иллюстрирована, просто и ясно написана и будет интересна массовому читателю.
Книга известных американских ученых, супругов Лоруса Дж. Милна и Маргарет Милн, «Чувства животных и человека» — занимательный, а местами и поэтичный рассказ об ощущениях, свойственных живым существам. О сложных проблемах бионики авторы говорят легко и просто, без излишней наукообразности. Мы узнаем из книги, почему пчелы не видят красного цвета, как птицы ориентируются при перелетах, каким образом летучие мыши чувствуют преграды на своем пути и многое, многое другое. При этом Милны все время сравнивают чувства животных с человеческими чувствами, наводят читателя на мысль о том, что живые организмы с их сложной и малоизученной структурой органов чувств представляют большой интерес не только для биологов, но и для физиков, математиков и особенно конструкторов, создающих самоорганизующиеся устройства.
В книге известного популяризатора науки А. Азимова рассматривается сложный путь развития биологии с древних времен до наших дней. Автор уделяет внимание всем отраслям биологии, показывая их во взаимодействии со смежными науками.Читатель узнает о вкладе в биологию великих ученых всех времен — Гарвея, Левенгука, Геккеля, Дарвина, Пастера, Ивановского, Мечникова, Павлова и других.Написанная просто и доступно, книга будет интересным и полезным чтением для преподавателей высшей школы, учителей, студентов, школьников и для всех любителей естественных наук.