Живой учебник геометрии - [9]
6) П р я м ы е л и н и и, в с т р е ч а ю щ и е о д н у и т у ж е п р я м у ю п о д р а в н ы м и с о о т в е т с т в е н н ы м и
у г л а м и (черт. 51), п а р а л л е л ь н ы м е ж д у с о б о й. – Если бы они были не параллельны, т. е. если бы встречались, то уг. 2, например, оказался бы внешним углом треугольника, а р а в н ы й е м у уг. 1 – внутренним углом того же треугольника; но это невозможно (см. следствие 3-е).
На последнем свойстве основан способ проводить параллельные линии с помощью линейки и чертежного треугольника (черт. 52).
Повторительные вопросы
Могут ли три угла треугольника быть тупыми? А только два угла? – Может ли в треугольнике быть три прямых угла? А два прямых угла? (Попробуйте начертить такой треугольник). – Сколько перпендикуляров можно провести к прямой линии из внешней точки? – Каким свойством обладают два перпендикуляра к одной прямой? – Каким свойством обладают две прямые, встречающие третью под равными соответственными углами? – Как чертят параллельные помощью линейки и чертежного треугольника?
§ 17. Как построить треугольник по трем сторонам
Рассмотрим следующую задачу:
Расстояния между тремя селениями 7 км, 5 км и 6 км. Начертить расположение этих селений в масштабе 1 км в 1 см.
Ясно, что точки, изображающие селения, нужно расположить на вершинах треугольника, стороны которого 7 см, 5 см и 6 см.
Объясним, как начертить («построить») этот треугольник
Проведем (черт. 53) по линейке прямую линию MNи отложим на ней помощью циркуля одну из сторон треугольника – напр., в 6 см. Концы этого отрезка обозначим буквами А и В. Остается найти такую третью точку, которая удалена от А на 7 см и от В на 5 см (или наоборот): это и будет третья вершина треугольника со сторонами 7 см, 5 см и 6 см. Чтобы эту точку разыскать, раздвигают сначала концы циркуля на 7 см и описывают окружность вокруг точки А, как около центра (черт. 54). Все точки этой окружности отстоят от Aна 7 см; среди них нужно найти ту, которая отстоит от вершины В на 5 см. Для этого вокруг В, как около центра, описывают окружность радиусом 5 см. Где обе окружности пересекаются, там лежат точки, удаленные от А на 7 см и от В на 5 см (черт. 54). Наши окружности пересекутся в двух точках С и D. Соединив их с А и В, получим два треугольника САВ и DAB, имеющие стороны в 6 см, в 7 см и в 5 см.
Нетрудно убедиться, что треугольники эти равны, т. е. будут совпадать, если их наложить один на другой. Для этого перегнем черт. 54 так, чтобы линией перегиба была прямая МN, и чтобы верхняя часть чертежа покрыла нижнюю. Обе окружности перегнутся при этом по их диаметрам, и верхние полуокружности совпадут с нижними (почему?); но если совпадают все– точки обеих полуокружностей, то должны совпадать и точки их пересечений С и D, а тогда сольются и стороны обоих треугольников. Значит, треугольники CAB и DАВ – равны.
Мы могли бы вести построение треугольника и в другом порядке: отложить на МN сначала сторону в 7 см и описать окружность радиусами 5 см и 6 см. Или же отложить сначала сторону в 5 см, и описать окружность радиусами в 6 см и в 7 см. При любом порядке построения у нас будут получаться одни и те же треугольники, только различно повернутые (или перевернутые на левую сторону). В подробных учебниках математики доказывается, что все треугольники, составленные из одинаковых сторон, равны между собою (т. е. при наложении совпадают всеми точками). Другими словами, если три стороны одного треугольника порознь равны трем сторонам другого треугольника, то эти треугольники можно наложить друг на друга так, чтобы все их точки совпали. Это выражают короче так:
Т р е у г о л ь н и к и р а в н ы п о т р е м с т о р о н а м.
Так как при совпадении сторон треугольников совпадают и их углы, то ясно, что в равных треугольниках между равными сторонами (и против равных сторон) лежат и равные углы. Равенство трех сторон треугольников есть признак того, что у этих треугольников равны и углы. Значит, в треугольнике нельзя изменить углов, не меняя длины его сторон: иначе оказалось бы возможным получить треугольники с одинаковыми сторонами и в то же время с неодинаковыми углами. Этим свойством треугольника часто пользуются на практике. Например, чтобы рама АВCD (черт. 55) прочно сохраняла свою форму ее разбивают перекладкой BDна два треугольника (черт. 56). Тоже назначение имеет и сеть треугольников в частях мостов и др. сооружений (черт. 57 и 58).
Всегда ли по трем сторонам можно построить треугольник? Вникая в описанное раньше построение, мы поймем, что третья вершина треугольника отыскивается только тогда, когда окружности пересекаются. Если бы на черт. 54 сторона АВ была не в 6 см, а в 15 см, то другие две стороны (7 см и 5 см) давали бы слишком короткие радиусы, чтобы окружности могли пересечься, и тогда треугольник нельзя было бы построить. Вообще, если один отрезок больше, чем сумма двух других, то из таких отрезков нельзя построить треугольника. Это и прямо видно из фигуры всякого треугольника (черт. 44): прямая линия – самая короткая из всех, проведенных между ее концами; поэтому
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.