Живой учебник геометрии - [21]
Когда первая промежуточная веха В поставлена, помощник ваш идет дальше, и таким же образом устанавливается следующая веха – С. Теперь, глядя на веху А, вы должны видеть ее покрывающей сразу вехи В, С и Е. Если измеряемое расстояние длинно, вы ставите затем 5-ю веху, 6-ю и т. д.
Измерение такого «провешенного» расстояния значительно облегчается: вы идете с мерным шнуром от вехи к вехе.
Возможны и более сложные случаи «вешения». Бывает, например, что обе конечные вехи недоступны для мерщиков – установлены, скажем, за речками; они хорошо видны, но к ним не подобраться. В этом случае расставляют промежуточные вехи между А и D(черт. 113). В какой-нибудь точке близ прямой ADставим веху В. Затем междувехой В и А устанавливаем на прямой ВА веху С: это удобно сделать, потому что веха В доступна.
Потом на прямой CD ставим веху Е. Между Е и А помещаем веху F; между F и D веху G; между G и А – веху H и т. д. Подвигаясь постепенно таким образом все ближе и ближе к прямой AD мы наконец разместим последнюю пару вех как раз на этой прямой. А имея две доступные вехи, нетрудно уже расставить и сколько угодно других.
Сходным образом поступают и в том случае, когда между конечными точками А и Dрасположена горка, так что, стоя у одного конца линии, нельзя видеть другого. Здесь размещают вехи в таком порядке (черт. 114). Сначала ставят веху В, потом между А и В – веху С, а между В и D веху E. Между C и E устанавливают веху F и с нею повторяют то, что делали с вехой В, – т. е. ставят на линии FA веху G, а между F и D ставят веху Н – затем между G и Н ставят веху K и так постепенно подвигаются к прямой АD пока, наконец, не очутятся на ней с последней парой вех.
§ 40. Эккер и его употребление
Взаимно перпендикулярные линии на земле проводятся при помощи инструмента, называемого эккером. Эккер – это две деревянные планки, скрепленные накрест и установленные на заостренной палке (черт. 115). У концов планок воткнуты 4 иглы (или прикреплены пластинки с прорезами) так, что прямые соединяющие противоположные иголки (или прорезы) пересекаются друг с другом под прямым углом. Впрочем нет надобности делать эккер непременно из перекрещивающихся планок; можно просто прибить четырехугольную или круглую доску к палке, в виде одноногого столика, а на этой доске установить четыре булавки Размещение булавок тоже дело не сложное: возьмите листок бумаги, перегните его раз, а затем второй раз так, чтобы линии первого сгиба совпадали. Когда вы развернете потом эту бумагу, на ней будут обозначены две линии, пересекающиеся под прямым углом. Расправьте этот листок на доске экера и воткните булавки в лики сгиба, близ краев. Бумажку можно тогда убрать– эккер готов.
Объясним теперь, как пользоваться эккером. Предположим, вы хотите аккуратно отмерить на земле прямоугольную площадку 35 метров длины и 15 ширины.
Воткнув заостренный конец эккера в одну из вершин отмеряемого четырехугольника, вы глядите вдоль двух булавок, повернув эккер так, чтобы линия вашего взгляда шла по направлению одной стороны будущей площадки (черт. 115). Помощник, по вашему указанию, ставит одну или две вехи как раз на этой линии, т. е. так, чтобы булавки покрывали расставляемые вехи. Когда это сделано и в провешенном направлении отмерена от эккера нужная длина, вы, не сдвигая эккера с места и не поворачивая его (даже не дотрагиваясь до него, чтобы не качнуть), смотрите вдоль двух других булавок, т. е. под прямым углом к прежнему направлению (черт. 115). Поставив в этом направлении веху, отмеряют на ней длину и концы обеих длинных линий соединяют прямой. Получается прямоугольник требуемых размеров.
Впрочем, если надо провести перпендикуляр короткий, то при некотором навыке можно сделать это без эккера, на глаз, – особенно, если линии при этом измеряются шагами, т. е. измерение вообще ведется только приблизительно.
Эккером можно воспользоваться и тогда, когда приходится мерить линию, по которой нельзя пройти с мерным шнуром. Пусть, например, требуется измерить расстояние от точки А до точки В (черт. 116); между ними лежит озеро или непроходимое болото. Ставим экер в точке Л, направляем две его булавки вдоль линии АВ, а по направлению двух других, под прямым углом к АВ, провешиваем (черт. 116) линию АС. В точке С под прямым углом провешиваем линию CDи отыскиваем на ней такую точку E, чтобы линия BEвстречала под прямым углом линию CD. Это делается тоже помощью эккера; когда одна пара булавок направлена по линии CD, другая должна покрывать точку В; после нескольких проб такую точку всегда удается найти. Найдя точку Е, измеряем расстояние СЕ: оно в точности равно тому непроходимому расстоянию АВ, которое мы желаем определить.
Очень полезно тщательно выверить зккер, т. е. убедиться, действительно ли равны между собою его четыре угла. Для этого, расставив вехи по двум перпендикулярным направлениям, поверните эккер и посмотрите, будут ли эти направления совпадать с линиями булавок при новом положении эккера. Если нет, нужно булавки немного переместить, пока не добьетесь строгого равенства всех четырех его углов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.