Живой учебник геометрии - [15]

Шрифт
Интервал

Р е ш е н и е. Площадь участка равна 8,5 Ч = (180 + 170)/ 2= 1490 кв. м. Число шашек = 72 000.

26. Скат крыши имеет форму трапеции, основания которой 23,6 м и 19,8 м, а высота 8,2 м. Сколько материала и рабочей силы потребуется на его покрытие, если на кв. м требуется:

Железных листов. . . . . . 1,23

Гвоздей кровельных кг. . . . 0,032

Олифы кг. . . . . . . . . .0,036

Кровельщиков. . . . . . . 0,45.

Р е ш е н и е. Площадь ската равна 8,2 ? (23,6 + 19,8)/ 2 = 178 кв. м. Остается умножить на 178 все числа таблички.

§ 29. Площадь многоугольника и неправильных фигур

Фигуры, ограниченные более чем 4-мя линиями, назы ваются м н о г о у г о л ь н и к а м и (черт. 96). Прямые, соединяющие две несоседние вершины многоугольника, называются д и а г о н а л я м и (черт. 96, b). Так как всякий многоугольник можно разбить диагоналями на треугольники, то площадь многоугольника легко вычислить, найдя площадь каждой его треугольной части.

Если, например, план участка имеет форму многоугольника, то, проведя в нем диагонали, измеряют длину оснований и высот образовавшихся треугольников. По этим данным определяют площадь каждого треугольника, а зная это, вычисляют площадь составляемого ими многоугольника.


При измерении площади участка, ограниченного линией неправильной формы, приходится довольствоваться лишь приближенным результатом. Пусть требуется определить площадь фигуры, изображенной на черт. 97. Для этого проводят прямую АВ и через равные расстояния – к ней перпендикуляры. Фигура будет разрезана ими на узкие полосы, каждую из которых можно рассматривать как трапецию. Измерив параллельные стороны каждой трапеции, а также высоту (одинаковую для всех, потому что перпендикуляры проведены на равных расстояниях), вычисляют их площади; сумма отдельных площадей приближенно равна площади данной фигуры. Чем ближе проведены друг к другу перпендикуляры, тем точнее определение площади всей фигуры.


В некоторых случаях можно определить приближенно площадь фигуры посредством в з в е ш и в а н и я. Если, например, фигура, площадь которой требуется определить, начерчена на картоне, то, вырезав ее, узнают тщательным взвешиванием, во сколько раз эта фигура тяжелее сантиметрового квадрата из того же картона; во столько же раз, очевидно, больше и площадь.[5]

V. ПОВЕРХНОСТЬ И ОБЪЕМ НЕКОТОРЫХ ТЕЛ[6]

§ 30. Куб

До сих пор мы занимались только плоскими фигурами, т. е. такими, которые всеми своими точками расположены на плоскости. Плоскими поверхностями или плоскостями называются такие «поверхности, которые ровны и гладки, как поверхность зеркала или полированной доски; край линейки, приложенный в любом месте к плоскости, примыкает к ней всеми своими точками.

Теперь перейдем к фигурам, которые имеют не только длину и ширину, но также и высоту или толщину. Такие фигуры называются т е л а м и.


Начнем с рассмотрения наиболее общеизвестного тела – куба (черт. 98). Куб ограничен 6-ю равными квадратами, которые называются его г р а н я м и; стороны же граней называются р е б р а м и. Одна из особенностей куба та, что его противоположные грани лежат в плоскостях, которые не встречаются, сколько бы их ни продолжали; такие плоскости называются п а р а л-л е л ь н ы м и.

Чтобы склеить куб из бумаги (либо изготовить из жести), надо начертить его выкройку, или, как ее называют, «развертку». На черт. 99 изображена такая развертка куба для склеивания из бумаги (полоски у краев граней оставлены для клея).


Повторительные вопросы

Что называется плоскостью? Телом? Кубом? Гранями куба? Ребрами? – Сколько у куба граней? Сколько ребер? – Начертите развертку куба.

Применения

27. Надо изготовить куб, полная поверхность которого равна 600 кв. см. Каково должно быть ребро этого куба?

Р е ш е н и е. Площадь каждой из шести квадратных граней куба равна 600: 6 = 100 кв. см. Ребро куба равно стороне квадрата, т. е. ?100 = 10 см.

§ 31. Прямоугольный параллелепипед

Куб может служить примером тел, которые в математике называются «прямоугольными параллелепипедами». Прямоугольный параллелепипед, это – тело, имеющее форму прямоугольного ящика или бруса; оно ограничено 6-ю п р я м о у г о л ь н и к а м и; противоположные грани его параллельны и равны (черт. 100).


Часто нужно бывает определить, как велик объем прямоугольного параллелепипеда, – например, узнать вместимость ящика, «кубатуру» комнаты, объем бруса и т. п. Единицею меры для объемов служит объем такого куба, ребро которого равно 1 см, 1 м, – вообще какой-нибудь единице длины («линейной» единице). Такая единица меры называется «кубическим сантиметром», «кубическим метром» и т. п. – в зависимости от длины ребра кубической единицы. Подобно тому, как п л о щ а д ь фигуры можно определить, измерив лишь некоторые линии этой фигуры, так и объем многих тел возможно вычислить, если измерить некоторые их линии. Покажем, как это делается для прямоугольного параллелепипеда.

Пусть требуется определить объем (кубатуру) комнаты (черт. 101). Измеряем линейным метром длину и ширину пола: предположим, что длина его 4 м, а ширина 3 м. Мы можем, следовательно, расчертить пол на 4 3, т. е. на 12 метровых квадратов, как показывает черт. 102. Измерим теперь высоту комнаты; пусть она равна 3 метрам. Тогда очевидно, что на каждом метровом квадрате пола можно вообразить себе квадратный столб в 3 метра высоты, т. е. составленный из 3 кубических метров (черт. 103).


Еще от автора Яков Исидорович Перельман
Быстрый счет. Тридцать простых приемов устного счета

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Занимательная астрономия

 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.


Развлечения со спичками

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Жар холодных числ и пафос бесстрастной логики

Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.