Живой учебник геометрии - [12]
Другое свойство каждого прямоугольника то, что противоположные его стороны равны между собою. В этом можно убедиться, если соединить противоположные вершины прямоугольника прямой линией, т. е. провести в нем диагональ. Соединив А с С (черт. 79) мы получим два треугольника АВС и ADC. Легко показать, что эти треугольники равны друг другу: сторона АС – общая, уг. 1 = уг. 2, потому что это перекрестные углы при параллельных АВ и CDпо такой же причине равны углы 3 и 4. По стороне же и двум углам треугольники ABCи ACDравны; следовательно, сторона АВ = стороне DС, и сторона AD= стороне ВС.
Такие четыреугольники, у которых, как у прямоугольников, противоположные стороны п а р а л л е л ь н ы, называются параллело граммами. На черт. 80 изображен пример параллелограмма: АВ параллельно DС, а ADпараллельно BС.Черт.80
Прямоугольник – один из параллелограммов, а именно такой, у которого все углы прямые. Легко убедиться, что каждый параллелограмм обладает следующими свойствами:
П р о т и в о п о л о ж н ы е у г л ы п а р а л л ел о г р а м м а р а в н ы; п р о т и в о п о л о ж н ы е с т о р о н ы
п а р а л л е л о г р а м м а р а в н ы.
Чтобы убедиться в этом, проведем в параллелограмме ABCD(черт. 81) прямую ВD (диагональ) и сравним треугольники ABDи ВDC. Эти треугольники равны (случай УСУ): BD– общая сторона; уг. 1 = уг. 2, уг. 3 = уг. 4 (почему?). Отсюда вытекают перечисленные раньше свойства.
Параллелограмм с четырьмя равными сторонами называется р о м б о м.
Повторительные вопросы
Какая фигура называется квадратом? Прямоугольником? – Что называется диагональю? – Какая фигура называется параллелограммом? Ромбом? – Укажите свойства углов и сторон всякого параллелограмма. – Какой прямоугольник называется квадратом? – Какой параллелограмм называется прямоугольником? – В чем сходство и различие между квадратом и ромбом.
Применения
15. Квадрат чертят так: отложив одну сторону проводят к ней на концах перпендикуляры, откладывают на них такие же длины и соединяют концы прямой линией (черт. 82). Как убедиться, что четвертая сторона, начерченного четырехугольника равна трем остальным и что все углы его прямые?
Р е ш е н и е. Если построение велось так, что к стороне АВ в точках А и В были проведены перпендикуляры, на которых отложены: АС = АВ и DВ = AB, то остается доказать, что углы С и Dпрямые и что CDравно АВ. Для этого проведем (черт. 83) диагональ AD. Уг. CAD= ADB, как соответственные (при каких параллельных?); АС = DB, а потому треугольники CADи BADравны (по признаку СУС). Отсюда выводим, что CD= ABи уг. С = прямому углу В. Как доказать, что четвертый угол CDBтоже прямой?
16. Как начертить прямоугольник? Почему начерченная фигура может быть названа прямоугольником? (Показать, что все углы начерченной фигуры прямые).
Р е ш е н и е сходно с решением предыдущей задачи.
17. Докажите, что обе диагонали прямоугольника равны.
Р е ш е н и е (черт. 84) вытекает из равенства треугольников АВС и АВD (по признаку СУС).
18. Докажите, что диагонали параллелограмма делят друг друга пополам.
Р е ш е н и е. Сравнивая (черт. 85) треугольники АВО и DСО, убеждаемся, что они равны (по признаку УСУ). Отсюда АО = ОС, 0В = ОD.
19. Длина общего перпендикуляра между двумя параллельными прямыми называется р а с с т о я н и е м между ними. Докажите, что расстояние между параллельными всюду одинаково.
У к а з а н и е: Какую фигуру образуют параллельные линии с двумя перпендикулярами между ними?
IV. ИЗМЕРЕНИЕ ПЛОЩАДЕЙ
§ 24. Квадратные меры. Палетка
В фигурах часто приходится измерять не только д л и н у линий и у г л ы между ними, но и величину того участка, который они охватывают, – т. е. их п л о щ а д ь. В каких мерах измеряется площадь? За меру д л и н ы принята определенная д л и н а (метр, сантиметр), за меру у г л о в – определенный у г о л (1°); за меру же п л о щ а д е й принята определенная п л о щ а д ь, а именно, площадь квадрата со стороною в 1 метр, в 1 см и т. д. Такой квадрат называется «квадратным метром», «квадратным сантиметром» и т. д. Измерить площадь, значит узнать, сколько в ней квадратных единиц меры.
Если измеряемая площадь не велика (умещается на листе бумаги), ее можно измерить следующим образом. Прозрачную бумагу разграфляют на сантиметровые квадраты и накладывают на измеряемую фигуру. Тогда нетрудно прямо сосчитать, сколько квадратных сантиметров содержится в границах фигуры. При этом неполные квадраты близ границы принимают (на глаз) за полквадрата, за четверть квадрата и т. п., или мысленно соединяют их по несколько в целые квадраты. Разграфленная так прозрачная бумага называется п ал е т к о й. Этим способом часто пользуются для измерения площадей неправильных участков на плане.
Но не всегда бывает возможно и удобно накладывать сеть квадратов на измеряемую фигуру. Нельзя, например, измерять таким образом площадь пола или земельного участка. В таких случаях, вместо прямого измерения площади, прибегают к неприятному, состоящему в том, что измеряют только длину некоторых л и н и й фигуры и производят над полученными числами определенные действия. В дальнейшем мы покажем, как это делается.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.